Advertisement

Optimization of Reactive Flows in a Single Channel of a Catalytic Monolith: Conversion of Ethane to Ethylene

  • H. G. Bock
  • O. Deutschmann
  • S. Körkel
  • L. Maier
  • H. D. Minh
  • J. P. Schlöder
  • S. Tischer
  • J. Warnatz

Summary

We discuss the modeling, simulation, and, for the first time, optimization of the reactive flow in a channel of a catalytic monolith with detailed chemistry. We use boundary layer approximation to model the process and obtain a high dimensional PDE. We discuss numerical methods based on the efficient solution of high dimensional stiff DAEs arising from spatial semi-discretization and SQP method for the optimal control problem parameterized by the direct approach. We have investigated the application of conversion of ethane to ethylene which involves a complex reaction scheme for gas phase and surface chemistry. Our optimization results show that the maximum yield, an improvement of a factor of two, is achieved for temperatures around 1300 K.

Keywords

Optimal Control Problem Reactive Flow Oxidative Dehydrogenation Backward Differentiation Formula Wall Temperature Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bauer, H. G. Bock, and J. P. Schlöder. DAESOL-a BDF-code for the numerical solution of differential algebraic equations. Technical report, IWR, University of Heidelberg, 1999. SFB 359.Google Scholar
  2. 2.
    I. Bauer, F. Finocchi, W. Duschl, H. Gail, and J. Schlöder. Simulation of chemical reactions and dust destruction in protoplanetary accretion disks. Astronomy & Astrophys., 317:273–289, 1997.Google Scholar
  3. 3.
    A. Beretta, E. Ranzi, and P. Forzatti. Oxidative dehydrogenation of light paraffins in novel short contact time reactors. Experimental and theoretical investigation. Chemical Engineering Science, 56(3):779–787, 2001.CrossRefGoogle Scholar
  4. 4.
    C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer. ADIFOR 2.0 User’s Guide, 1995.Google Scholar
  5. 5.
    H. G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics. In K. H. Ebert, P. Deuflhard, and W. Jäger, editors, Modelling of Chemical Reaction System, volume 18 of Chemical Physics 18, pages 102–125. Springer, Heidelberg, 1981.Google Scholar
  6. 6.
    M. E. Coltrin, R. J. Kee, and J. A. Miller. A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor. J. Electronchem. Soc, 131(2):425–434, 1984.CrossRefGoogle Scholar
  7. 7.
    A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian matrices. J. Inst. Math. Appl., 13:117–119, 1974.zbMATHGoogle Scholar
  8. 8.
    O. Deutschmann. DETCHEM-User manual, version 1.4. IWR, University of Heidelberg, 2000.Google Scholar
  9. 9.
    P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Opt., 12:979–1006, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Huff and L. D. Schmidt. Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short contact times. Journal of Physical Chemistry, 97(45):11815, 1993.CrossRefGoogle Scholar
  11. 11.
    V. Karbach. Validierung eines detaillierten Reaktionsmechanismus zur Oxidation von Kohlenwasserstoffen bei hohen Temperaturen. Diplomarbeit, Universität Heidelberg, 1997.Google Scholar
  12. 12.
    R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting Flow: Theory and Practice. Willey, 2003.Google Scholar
  13. 13.
    L. L. Raja, R. J. Kee, O. Deutschmann, J. Warnatz, and L. D. Schmidt. A critical evaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catalysis Today, 59:47–60, 2000.CrossRefGoogle Scholar
  14. 14.
    W. E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego, CA, 1991.zbMATHGoogle Scholar
  15. 15.
    M. v. Schwerin, O. Deutschmann, and V. Schulz. Process optimization of reactives systems by partial reduced SQP methods. Computers and Chemical Engineering, 24:89–97, 2000.CrossRefGoogle Scholar
  16. 16.
    J. Warnatz, R. Dibble, and U. Maas. Combustion, Physical and Chemcial Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer-Verlag, New York, 1996.Google Scholar
  17. 17.
    D. K. Zerkle, M. D. Allendorf, M. Wolf, and O. Deutschman. Understanding homogeneous and heterogeneous contributions to the partial oxidation of ethane in a short contact time reactor. J. Catal., 196:18–39, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. G. Bock
    • 1
  • O. Deutschmann
    • 2
  • S. Körkel
    • 1
  • L. Maier
    • 2
  • H. D. Minh
    • 1
  • J. P. Schlöder
    • 1
  • S. Tischer
    • 2
  • J. Warnatz
    • 1
  1. 1.Interdisziplinäxes Zentrum für Wissenschaftliches Rechnen (IWR)Universität HeidelbergHeidelberg
  2. 2.Institut für Chemische Technologie und PolymerchemieUniversität KarlsruheKarlsruhe

Personalised recommendations