Kernel-Based Non-linear Template Matching

  • Barend J. van Wyk
  • Michaël A. van Wyk
  • Guillaume Noel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)


A new non-linear minimum norm template matching technique is introduced. Similar to the theory of Support Vector Machines the proposed framework is also based on Reproducing Kernel Hilbert Space principles. Promising results when applied to aerial image matching are reported and future work is highlighted.


Support Vector Machine Input Image Reference Image Template Match Linear Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1999)Google Scholar
  2. 2.
    Ravichandran, G., Trivedi, M.M.: Circular-Mellin Features for Texture Segmentation, vol. 2(12), pp. 1629–1641 (1995)Google Scholar
  3. 3.
    Hall, E.: Computer Image Processing and Recognition. Academic Press, London (1979)zbMATHGoogle Scholar
  4. 4.
    Uenohara, M., Kanade, T.: Use of the Fourier and Karhunen-Loeve Decomposition for Fast Matching with a Large Set of Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(8), 891–899 (1997)CrossRefGoogle Scholar
  5. 5.
    Ben-Arie, J., Rao, K.R.: A Novel Approach for Template Matching by Nonorthogonal Image Expansion. IEEE Transactions on Circuits and Systems for Video Technology 3, 71–84 (1993)CrossRefGoogle Scholar
  6. 6.
    Ben-Arie, J., Rao, K.R.: Nonorthogonal Image Expansion Related to Optimal Template Matching in Complex Images. CVGIP: Graphical Models and Image Processing 56, 149–160 (1994)CrossRefGoogle Scholar
  7. 7.
    De Figueiredo, J.P.: A Generalized Fock Space Framework for Nonlinear System and Signal Analysis. IEEE Transactions on Circuits and Systems 30(9), 637–647 (1983)zbMATHCrossRefGoogle Scholar
  8. 8.
    Van Wyk, M.A., Durrani, T.S.: A Framework for Multi-scale and hybrid RKHS-based Approximators. IEEE Transactions on Signal Processing 48(12), 3559–3568 (2000)CrossRefGoogle Scholar
  9. 9.
    Máté, L.: Hilbert Space Methods in Science and Engineering. Adam Hilger, New York (1990)Google Scholar
  10. 10.
    Wahba, G.: Soft and Hard Classification by Reproducing Kernel Hilbert Space Methods, Technical Report 1067, Department of Statistics, University of Wisconsin (2002)Google Scholar
  11. 11.
    Aronszajn, N.: Theory of Reproducing Kernels. Transactions of the American Mathematical Society (68), 337–404 (1950)Google Scholar
  12. 12.
    Zyla, L.V., De Figueiredo, J.P.: Nonlinear System Identification Based on a Fock Space Framework. SIAM Journal of Control and Optimization 21(6), 931–939 (1983)zbMATHCrossRefGoogle Scholar
  13. 13.
    Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley and Sons, New York (1969)zbMATHGoogle Scholar
  14. 14.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Barend J. van Wyk
    • 1
  • Michaël A. van Wyk
    • 1
  • Guillaume Noel
    • 1
  1. 1.French South-African Technical Institute in ElectronicsTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations