Advertisement

Abstract

We propose a structural perceptron for supervised and unsupervised learning on data represented in terms of attributed graphs. We integrate structural perceptrons into a multi-layer perceptron and competitive learning network to provide examples of supervised and unsupervised neural learning machines which are suited to process graphs. In first experiments the proposed algorithms were successfully applied to function regression, classification, and clustering.

References

  1. 1.
    Bunke, H., Foggia, P., Guidobaldi, C., Vento, M.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Gärtner, T.: A survey of kernels for structured data. SIGKKD Explorations 5(1), 49–58 (2003)CrossRefGoogle Scholar
  3. 3.
    Geibel, P., Jain, B., Wysotzki, F.: SVM learning with the SH inner product. In: Verleysen, M. (ed.) Proc. of the 12th European Symposium on Artificial Neural Networks, ESANN 2004, D-Facto, Brussels (2004) (accepted for publication)Google Scholar
  4. 4.
    Günter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern Recognition Letters 23, 401–417 (2002)CrossRefGoogle Scholar
  5. 5.
    Herbrich, R.: Learning Kernel Classifiers. The MIT Press, Cambridge (2002)Google Scholar
  6. 6.
    Hofmann, T., Buhmann, J.: Pairwise data clustering by deterministic annealing. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(1), 1–14 (1997)CrossRefGoogle Scholar
  7. 7.
    Jain, B., Wysotzki, F.: Central clustering in the domain of graphs. Machine Learning Journal (2004) (accepted for publication)Google Scholar
  8. 8.
    Jiang, X., Münger, A., Bunke, H.: On median graphs: properties, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  9. 9.
    Lozano, M., Escolano, F.: Em algorithm for clustering an ensemble of graphs with comb matching. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 52–67. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2223 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Foggia, M.V.P., Genna, R.: Symbolic vs connectionist learning: an experimental comparison in a structured domain. IEEE Transaction on Knowledge and Data Engineering 13(2), 176–195 (2001)CrossRefGoogle Scholar
  12. 12.
    Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks 8(3), 714–735 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Brijnesh J. Jain
    • 1
  • Fritz Wysotzki
    • 1
  1. 1.Dept. of Electrical Engineering and Computer ScienceTechnical University BerlinGermany

Personalised recommendations