Abstract

Most machine learning algorithms are designed either for supervised or for unsupervised learning, notably classification and clustering. Practical problems in bioinformatics and in vision however show that this setting often is an oversimplification of reality. While label information is of course invaluable in most cases, it would be a huge waste to ignore the information on the cluster structure that is present in an (often much larger) unlabeled sample set. Several recent contributions deal with this topic: given partially labeled data, exploit all information available. In this paper, we present an elegant and efficient algorithm that allows to deal with very general types of label constraints in class learning problems. The approach is based on spectral clustering, and leads to an efficient algorithm based on the simple eigenvalue problem.

Keywords

Spectral Cluster Side Information Neural Information Processing System Label Information Multi Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    De Bie, T., Cristianini, N.: Convex methods for transduction. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    De Bie, T., Momma, M., Cristianini, N.: Efficiently learning the metric with side-information. In: Proceedings of the International Conference on Algorithmic Learning Theory (ALT), Nara, Japan (April 2003)Google Scholar
  3. 3.
    Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the International Conference on Machine Learning, ICML (2003)Google Scholar
  4. 4.
    Kamvar, S.D., Klein, D., Manning, C.D.: Spectral learning. In: IJCAI (2003)Google Scholar
  5. 5.
    Ng, A., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, Cambridge, MA, MIT Press, Cambridge (2002)Google Scholar
  6. 6.
    Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing gaussian mixture models with em using equivalence constraints. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)Google Scholar
  7. 7.
    Shental, N., Hertz, T., Weinshall, D., Pavel, M.: Adjustment learning and relevant component analysis. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 776–790. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  9. 9.
    Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Weston, J., Leslie, C., Zhou, D., Elisseeff, A., Noble, W.: Semi-supervised protein classification using cluster kernels. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)Google Scholar
  11. 11.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, Cambridge, MA, MIT Press, Cambridge (2003)Google Scholar
  12. 12.
    Yu, S.X., Shi, J.: Grouping with bias. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, Cambridge, MA, MIT Press, Cambridge (2002)Google Scholar
  13. 13.
    Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tijl De Bie
    • 1
  • Johan Suykens
    • 1
  • Bart De Moor
    • 1
  1. 1.ESAT-SCDKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations