Path Relinking Particle Filter for Human Body Pose Estimation

  • Juan José Pantrigo
  • Ángel Sánchez
  • Kostas Gianikellis
  • Abraham Duarte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)


This paper introduces the Path Relinking Particle Filter (PRPF) algorithm for improving estimation problems in human motion capture. PRPF hybridizes both Particle Filter and Path Relinking frameworks. The proposed algorithm increases the performance of general Particle Filter by improving the quality of the estimate, by adapting computational load to problem constraints and by reducing the number of required evaluations of the weighting function. We have applied the PRPF algorithm to 2D human pose estimation. Experimental results show that PRPF drastically reduces the MSE value to obtain the set of markers with respect to Condensation and Sampling Importance Resampling (SIR) algorithms.


Mean Square Error Particle Filter Particle Weight Path Relinking Manual Digitize 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang, L., Weiming, H., Tieniu, T.: Recent developments in human motion analysis. Pattern Recognition 36, 585–601 (2003)CrossRefGoogle Scholar
  2. 2.
    Moeslund, B., Granum, E.: A Survey on Computer Vision-Based Human Motion Capture. Computer Vision and Image Understanding 81, 168–231 (2001)CrossRefGoogle Scholar
  3. 3.
    Gavrila, D.: The visual analysis of human movement: a review. CVIU 73 1 (1999)Google Scholar
  4. 4.
  5. 5.
    Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. IEEE Conf. Computer Vision and Pattern Recognition 2, 126–133 (2000)Google Scholar
  6. 6.
    Aggarwal, J.K., Cai, Q., Liao, W., Sabata, B.: Articulated and elastic non-rigid motion: a review. In: IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 2–14 (1994)Google Scholar
  7. 7.
    Ju, S., Black, M., Yaccob, Y.: Cardboard people: a parameterized model of articulated image motion. In: IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 38–44 (1996)Google Scholar
  8. 8.
    Wachter, S., Nagel, H.-H.: Tracking persons in monocular image sequences. Computer Vision Image Understanding 74 3, 174–192 (1999)CrossRefGoogle Scholar
  9. 9.
    Zotkin, D., Duraiswami, R., Davis, L.: Joint Audio-Visual Tracking Using Particle Filters. EURASIP Journal on Applied Signal Processing 11, 1154–1164 (2002)Google Scholar
  10. 10.
    Glover, F., Laguna, M., Martí, R.: Scatter Search and Path Relinking: Foundations and Advances Designs. To appear in New Optimization techniques in Engineering (2003)Google Scholar
  11. 11.
    Glover, F.: A Template for Scatter Search and Path Relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 1–53. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Arulampalam, M., et al.: A Tutorial on Particle Filter for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. On Signal Processing 50(2), 174–188 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Juan José Pantrigo
    • 1
  • Ángel Sánchez
    • 1
  • Kostas Gianikellis
    • 2
  • Abraham Duarte
    • 1
  1. 1.Universidad Rey Juan CarlosMóstolesSpain
  2. 2.Universidad de ExtremaduraCáceresSpain

Personalised recommendations