Lung Segmentation on Postero-anterior Digital Chest Radiographs Using Active Contours

  • Isaac Iglesias
  • Pablo G. Tahoces
  • Miguel Souto
  • Anxo Martínez de Alegría
  • María J. Lado
  • Juan J. Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)


A computerized pulmonary segmentation based on the detection of oriented edges was performed in postero-anterior (PA) digital radiography (DR) images. To further improve detection of lung contours, a method based on the use of active contours models was developed. First, the technique calculates a set of reference lines to determine the relative position of the lungs in the image. Then, vertical and horizontal rectangular regions of interest (ROIs) are studied to identify the preliminary edge. These points are an approximation to the lung edges that are adjusted using the active contours models. We studied the influence of the different parameters of the active contours on the final result over 30 DR images. Results prove that the active contour models, with selected parameters, can be used to improve the results of a given segmentation scheme.


Active Contour Digital Radiography Active Contour Model Initial Contour Segmentation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Souto, M., Malagari, K.S., Tucker, D., Tahoces, P.G., Correa, J., Benakis, V.S., Roussos, C., Strigaris, K.A., Vidal, J.J., Barnes, G.T., Fraser, R.G.: Digital radiography of the chest: state of the art. Eur. Radiol. 4, 281–297 (1994)CrossRefGoogle Scholar
  2. 2.
    Correa, J., Souto, M., Tahoces, P.G., Malagari, K.S., Tucker, D., Larkin, J.J., Kuhlman, J., Barnes, G.T., Zerhouni, E., Fraser, R.G., Vidal, J.J.: Digital chest radiography: comparision of unprocessed and processed images in the detection of solitary pulmonary nodules. Radiology 195, 253–258 (1995)Google Scholar
  3. 3.
    Giger, M.L., Doi, K., MacMahon, H.: Image feature analysis and computer-aided diagnosis in digital radiography. automated detection of nodules in peripheral lung fields. Medical Physics 15, 158–166 (1988)CrossRefGoogle Scholar
  4. 4.
    Katsuragawa, S., Doi, K., MacMahon, H.: Image feature analysis and computer-aided diagnosis in digital radiography: detection and characterization of interstitial lung disease in digital chest radiographs. Medical Physics 15, 311–319 (1988)CrossRefGoogle Scholar
  5. 5.
    Carrascal, F.M., Carreira, J.M., Souto, M., Tahoces, P.G., Gómez, L., Vidal, J.J.: Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anteior and lateral digital chest radiographs. Medical Physics 25(7), 1118–1131 (1998)CrossRefGoogle Scholar
  6. 6.
    Nakamori, N., Doi, K., Sabeti, V., MacMahon, H.: Image feature analysis and computer-aided diagnosis in digital radiography: Automated analysis of sizes of heart and lung in chest images. Medical Physics 17(3), 342–350 (1990)CrossRefGoogle Scholar
  7. 7.
    Sanada, S., Doi, K., MacMahon, H.: Image feature analysis and computer-aided diagnosis in digital radiography: Automated delineation of posterior ribs in chest images. Medical Physics 18(5), 964–971 (1991)CrossRefGoogle Scholar
  8. 8.
    van Ginneken, B., ter Haar Romeny, B.M., Viergever, M.A.: Computeraided diagnosis in chest radiography: A survey. IEEE Trans. Med. Imag. 20(12), 1228–1241 (2001)CrossRefGoogle Scholar
  9. 9.
    Xu, X.-W., Doi, K.: Image feature analisys for computer aided diagnosis: Accurate determination of ribcage boundary in chest radiographs. Medical Physics 22(5), 617–626 (1995)CrossRefGoogle Scholar
  10. 10.
    Duryea, J., Boone, J.M.: A fully automated algorithm for the segmentation of lung fields on digital chest radiographics images. Medical Physics 22(2), 183–191 (1995)CrossRefGoogle Scholar
  11. 11.
    Armato III, S.G., Giger, M.L., MacMahon, H.: Automated lung segmentation in digitized posteroanterior chest radiographs. Acad. Radiol. 5, 245–255 (1998)CrossRefGoogle Scholar
  12. 12.
    Armato III, S.G., Giger, M.L., Ashizawa, K., MacMahon, H.: Automated lung segmentation in digital lateral chest radiographs. Medical Physics 25(8), 1507–1520 (1998)CrossRefGoogle Scholar
  13. 13.
    Vittitoe, N.F., Vargas-Voracek, R., Floyd Jr., C.E.: Identification of lung regions in chest radiographs using markov random field modeling. Medical Physics 25(6), 976–985 (1998)CrossRefGoogle Scholar
  14. 14.
    Tsujii, O., Freedman, M.T., Mun, S.K.: Automated segmentation of anatomic regions in chest radiographs using an adaptative-sized hybrid neural network. Medical Physics 25(6), 998–1007 (1998)CrossRefGoogle Scholar
  15. 15.
    van Ginneken, B., ter Haar Romeny, B.M.: Automatic segmentation of lung fields in chest radiographs. Medical Physics 27(10), 2445–2455 (2000)CrossRefGoogle Scholar
  16. 16.
    van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imag. 21(8), 924–933 (2002)CrossRefGoogle Scholar
  17. 17.
    Yue, Z., Goshtasby, A., Ackerman, L.V.: Automatic detection of rib borders in chest radiographs. IEEE Trans. Med. Imaging 14(3), 525–536 (1995)CrossRefGoogle Scholar
  18. 18.
    Meyers, P.H., Nice, H.C., Becker, C.M., Nettleton, N.J., Sweeney, J.W., Meckstroht, G.R.: Automated computer analysis of radiolographic images. Radiology 13, 1029–1034 (1964)Google Scholar
  19. 19.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International journal of computer vision 4, 321–331 (1988)CrossRefGoogle Scholar
  20. 20.
    Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Machine Intell. 12(9), 855–867 (1990)CrossRefGoogle Scholar
  21. 21.
    Williams, D.J., Shah, M.: A fast algorithm for active contour and curvature estimation. CVGIP: Image Understanding 55(1), 14–26 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Isaac Iglesias
    • 1
  • Pablo G. Tahoces
    • 2
  • Miguel Souto
    • 3
  • Anxo Martínez de Alegría
    • 3
  • María J. Lado
    • 4
  • Juan J. Vidal
    • 3
  1. 1.Laboratory for Radiologic Image ResearchUniversity of SantiagoSantiago
  2. 2.Department of Electronics and Computer ScienceUniversity of SantiagoSantiago
  3. 3.Department of RadiologyComplejo Hospitalario Universitario de Santiago (CHUS), University of SantiagoSantiago
  4. 4.Department of Computer ScienceUniversity of VigoVigo

Personalised recommendations