Symbols Recognition System for Graphic Documents Combining Global Structural Approaches and Using a XML Representation of Data

  • Mathieu Delalandre
  • Éric Trupin
  • Jean-Marc Ogier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)

Abstract

In this paper we present a symbols recognition system for graphic documents, based on a combination of global structural approaches. Our system allows to extract components and their loops, with their inclusion and neighboring links. So, it is possible to construct different graph types according to the considered recognition problem. Our system uses an XML representation of data, which allows an easy manipulation of these ones. We present some results on a symbols set of GREC2003’s recognition contest.

Keywords

Neighboring Graph Graphic Document Structural Noise Symbol Recognition Hybrid Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggarwal, A.K., Kulkarni, A.V.: A Sequential Approach to the Extraction of Shape Features. Computer Graphics and Image Processing (CGIP) 6(6), 538–557 (1977)CrossRefGoogle Scholar
  2. 2.
    Blostein, D., Fahmy, H., Grbavec, A.: Issues in the Practical Use of Graph Rewriting. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 38–55. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Burge, M., Monagan, G.: Using the Voronoi Tessellation for Grouping Words and Multi Part Symbols in Document. Vision Geometry IV (1995)Google Scholar
  4. 4.
    Delalandre, M., Héroux, P., Adam, S., Trupin, E., Ogier, J.M.: A Statistical and Structural Approach for Symbol Recognition Using XML Modelling. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, p. 281. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Delalandre, M., Trupin, E., Ogier, J.M.: Local Structural Analysis: A Primer. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 223–234. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Hancock, E., Wilson, R.: Graph-Based Methods for Vision: A Yorkist Manifesto. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, p. 31. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Kasturi, R., O’Gorman, L., Govindaraju, V.: Document Image Analysis: A Primer. Sadhana 27(1), 3–22 (2002)CrossRefGoogle Scholar
  8. 8.
    El Badawy, O., Kamel, M.: Shape Representation using Concavity Graphs. In: International Conference on Pattern Recognition, ICPR (2002)Google Scholar
  9. 9.
    Héroux, P.: S Diana, E. Trupin, Y. Lecourtier. A Structural Classification for Retrospective Conversion of Document. In: Structural and Syntactical Pattern Recognition, SSPR (2000)Google Scholar
  10. 10.
    Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol Recognition: Current Advances an Perspectives. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, p. 104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Loo, P.K., Tan, C.L.: Detection of Word Group Based on Irregular Pyramid. In: International Conference on Document Analysis And Recognition, ICDAR (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mathieu Delalandre
    • 1
  • Éric Trupin
    • 1
  • Jean-Marc Ogier
    • 2
  1. 1.Laboratory PSIUniversity of RouenMont Saint AignanFrance
  2. 2.Laboratory L3IUniversity of La RochelleLa RochelleFrance

Personalised recommendations