This paper describes an efficient algorithm for inverse halftoning of scanned color document images to resolve problems with interference patterns such as moiré and graininess when the images are displayed or printed out. The algorithm is suitable for software implementation and useful for high quality printing or display of scanned document images delivered via networks from unknown scanners. A multi-resolution approach is used to achieve practical processing speed under software implementation. Through data-driven, adaptive, multi-scale processing, the algorithm can cope with a variety of input devices and requires no information on the halftoning method or properties (such as coefficients in dither matrices, filter coefficients of error diffusion kernels, screen angles, or dot frequencies). Effectiveness of the new algorithm is demonstrated through real examples of scanned color document images.


Original Image Software Implementation Document Image Input Device Continuous Tone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kim, Y., Arce, G., Grabowski, N.: Inverse halftoning using binary permutation filters. IEEE Trans. Image Processing 4, 1296–1311 (1995)CrossRefGoogle Scholar
  2. 2.
    Damera-Venkata, N., Kite, T.D., Venkataraman, M., Evans, B.L.: Fast blind inverse halftoning. In: Proc. 1998 IEEE International Conference on Image Processing, pp. 64–68 (1998)Google Scholar
  3. 3.
    Luo, J., de Querioz, R., Fan, Z.: A robust technique for image descreening based on the wavelet transform. IEEE Trans. Signal Processing 46, 1179–1194 (1998)CrossRefGoogle Scholar
  4. 4.
    Hein, S., Zakhor, A.: Halftone to continuous-tone conversion of error-diffusion coded images. IEEE Trans. Image Processing 4, 208–216 (1995)CrossRefGoogle Scholar
  5. 5.
    Wong, P.: Inverse halftoning and kernel estimation for error diffusion. IEEE Trans. Image Processing 4, 486–498 (1995)CrossRefGoogle Scholar
  6. 6.
    Stevenson, R.: Inverse halftoning via MAP estimation. IEEE Trans. IP 6, 574–583 (1997)Google Scholar
  7. 7.
    Xiong, Z., Orchard, M., Ramchandran, K.: Inverse halftoning using wavelet. IEEE Trans. Image Processing 8, 1479–1483 (1999)CrossRefGoogle Scholar
  8. 8.
    Kite, T.D., Damera-Venkata, N., Evans, B.L., Bovik, A.C.: A fast, high-quality inverse halftoning algorithm for error diffused halftones. IEEE Trans. IP 9, 1583–1592 (2000)Google Scholar
  9. 9.
    Roetling, P.: US Patent 5343309 (August 1994)Google Scholar
  10. 10.
    Roetling, P.G.: US Patent 4630125 (1986)Google Scholar
  11. 11.
    Miceli, C., Parker, K.J.: Inverse halftoning. Journal of Electronic Imaging 1, 143–151 (1992)CrossRefGoogle Scholar
  12. 12.
    Chen, L.-M., Hang, H.-M.: An adaptive inverse halftoning algorithm. IEEE Trans. Image Processing 6, 1202–1209 (1997)CrossRefGoogle Scholar
  13. 13.
    Chang, P.-C., Yu, C.-S., Lee, T.-H.: Hybrid LMS-MMSE inverse halftoning technique. IEEE Trans. Image Processing 10, 95–103 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Mese, M., Vaidyanathan, P.P.: Look-up table (LUT) method for inverse halftoning. IEEE Trans. Image Processing 10, 1566–1578 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hirobumi Nishida
    • 1
  1. 1.Ricoh Image Appliance LabTokyoJapan

Personalised recommendations