The region’s internal properties (color, texture, ...) help to identify them and their external relations (adjacency, inclusion, ...) are used to build groups of regions having a particular consistent meaning in a more abstract context. Low-level cue image segmentation in a bottom-up way, cannot and should not produce a complete final “good” segmentation. We present a hierarchical partitioning of images using a pairwise similarity function on a graph-based representation of an image. The aim of this paper is to build a minimum weight spanning tree (MST) of an image in order to find region borders quickly in a bottom-up ’stimulus-driven’ way based on local differences in a specific feature.


Image Segmentation Maximal Clique Noisy Pixel Image Pyramid Shift Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bister, M., Cornelis, J., Rosenfeld, A.: A critical view of pyramid segmentation algorithms. PRL 11(9), 605–617 (1990)zbMATHGoogle Scholar
  2. 2.
    Borůvka, O., jistém, O.: Problému minimálnim. Práce Mor. Přírodvěd. Spol. v Brně (Acta Societ. Scienc. Natur. Moravicae) III(3), 37–58 (1926)Google Scholar
  3. 3.
    Cole, R., K.P.N., T.R.E.: A Linear-Work Parallel Algorithm for Finding Minimum Spanning Trees. Anual SPAA, 11–15 (1994)Google Scholar
  4. 4.
    Cooper, M.: The Tractibility of Segmentation and Scene Analysis. IJCV 30(1), 27–42 (1998)CrossRefGoogle Scholar
  5. 5.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Image Segmentation Using Local Variation. In: CVPR, pp. 98–104 (1998)Google Scholar
  6. 6.
    Fu, C.-S., Cho, W., Essig, K.: Hierarchical color image region segmentation for content-based image retrival system. IP 9(1), 156–162 (2001)Google Scholar
  7. 7.
    Gdalyahu, Y., Weinshall, D., Werman, M.: Self-Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization. PAMI 23(10), 1053–1074 (2001)Google Scholar
  8. 8.
    Guigues, L., Herve, L.M., Cocquerez, J.-P.: The Hierarchy of the Cocoons of a Graph and its Application to Image Segmentation. PRL 24(8), 1059–1066 (2003)zbMATHGoogle Scholar
  9. 9.
    Haxhimusa, Y., Kropatsch, W.G.: Hierarchical Image Partitioning with Dual Graph Contraction. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 338–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Haxhimusa, Y., Kropatsch, W.G.: Hierarchical Image Partitioning with Dual Graph Contraction. Technical Report No.81, PRIP, Vienna University of Technology, (July 2003),
  11. 11.
    Horowitz, S., Pavlidis, T.: Picture Segmentation by a Tree Traversal Algorithm. J. Assoc. Compt. Math. 2(23), 368–388 (1976)Google Scholar
  12. 12.
    Haxhimusa, Y., Glantz, R., Saib, M., Langs, G., Kropatsch, W.G.: Logarithmic Tapering Graph Pyramid. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 117–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Jolion, J.-M., Montanvert, A.: The adaptive pyramid, a framework for 2D image analysis. CVGIP: Im. Under. 55(3), 339–348 (1992)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jolion, J.-M., Rosenfeld, A.: A Pyramid Framework for Early Vision (1994)Google Scholar
  15. 15.
    Jain, K., Dubes, R.C.: Algorithms for Clustering Data (1988)Google Scholar
  16. 16.
    Keselman, Y., Dickinson, S.: Generic model abstraction from examples. CVPR 1, 856–863 (2001)Google Scholar
  17. 17.
    Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction. IEEProc. Vis. Im and Sig. Proc. 142(6), 366–374 (1995)CrossRefGoogle Scholar
  18. 18.
    Kropatsch, W.G.: Abstract pyramid on discrete represtations. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 1–21. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Lance, J., Williams, W.: A General Theory of Classificatory Sorting Strategies. Comput. J 9, 51–60 (1967)Google Scholar
  20. 20.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and Texture Analysis for Image Segmentation. Int. J. on Com. Vis. 43(1), 7–27 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Meer, P.: Stochastic image pyramids. CVGIP 45(3), 269–294 (1989)Google Scholar
  22. 22.
    Meer, P., Mintz, D., Montanvert, A., Rosenfeld, A.: Consensus vision. In: AAAI 1990 Work. on Qual. Vis., pp. 111–115 (1990)Google Scholar
  23. 23.
    Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular tesselations. PAMI 13(4), 307–316 (1991)Google Scholar
  24. 24.
    Pavan, M., Pelillo, M.: Dominiant Sets and Hierarchical Clustering. ICCV (2003)Google Scholar
  25. 25.
    Pavlidis, T.: Structural Pattern Recognition (1977)Google Scholar
  26. 26.
    Perona, P., Freeman, W.: A Factorization Approach to Grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)Google Scholar
  27. 27.
    Rosenfeld, A., Hummel, R., Zucker, S.: Scene labeling by relaxation operations. Sys. Man and Cyb. 6(6), 420–433 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sharon, E., Brandt, A., Basri, R.: Fast multiscale image segmentation. In: CVPR, pp. 70–77 (2000)Google Scholar
  29. 29.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. In: CVPR, pp. 731–737 (1997)Google Scholar
  30. 30.
    Urquhart, R.: Graph Theoretical Clustering Based on Limited Neighborhood Sets. Patt.Rec. 13(3), 173–187 (1982)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Wu, Z., Leahy, R.: An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation. PAMI 15(11), 1101–1113Google Scholar
  32. 32.
    Yu, S., Shi, J.: Segmentation with pairwise attraction and repulsion. In: ICCV, pp. 52–58 (2001)Google Scholar
  33. 33.
    Zahn, C.: Graph-theoretical methods for detecting and describing gestal clusters. IEEE Comput. 20, 68–86 (1971)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yll Haxhimusa
    • 1
  • Walter Kropatsch
    • 1
  1. 1.Pattern Recognition and Image Processing Group 183/2, Institute for Computer Aided AutomationVienna University of TechnologyAustria

Personalised recommendations