Advertisement

The Use of Graph Techniques for Identifying Objects and Scenes in Indoor Building Environments for Mobile Robots

  • Alberto Sanfeliu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)

Abstract

In this paper we present some of the common issues that appear when we try to recognize objects in indoor scenes of a building, and we describe some strategies for recognizing them by using graph techniques. These scene images are captured by the colour cameras of a mobile robot, which in the learning phase, learn the objects by taken a set of 2D images of the projective object views. Then afterwards, the robot must identify the objects once its moves through the area that has been used to learn the objects. We describe two strategies to use graph techniques for object and scene recognition, some algorithms and preliminary results.

Keywords

Mobile Robot Random Graph Voronoi Diagram Attribute Graph Colour Constancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andrade, J., Sanfeliu, A.: Integration of perceptual grouping and depth. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, September 3-7. IEEE Computer Society, vol. 1, pp. 295–298 (2000)Google Scholar
  2. 2.
    Belongie, S., Malik, J.: Matching with shape contexts. Proceedings IEEE Workshop on Image and Video Libraries, June 12, pp. 20–26 (2000)Google Scholar
  3. 3.
    Björner, A., Vergnas, M.L., Sturmfels, B., White, N., G.M.: Oriented matroids. Encyclopedia of Mathematics and its Applications, vol. 43. Cambridge University Press, Cambridge (1993)Google Scholar
  4. 4.
    Bunke, H.: Recent developments in graph matching. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, September 3-7, vol. 1, IEEE Computer Society, Los Alamitos (2000)Google Scholar
  5. 5.
    Chen, C., Kak, A.: Robot vision system for recognizing objects in low-order polynomial time. IEEE Trans. on System, Man and Cybernetics 18(6), 1535–1536 (1989)CrossRefGoogle Scholar
  6. 6.
    Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on PAMI 17, 749–764 (1995)Google Scholar
  7. 7.
    DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation, a survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(2) (Febraury 2002)Google Scholar
  8. 8.
    Felzenswalb, P.F., Huttenlocher, D.P.: Image Segmentation Using Local Variation. Proc. of the IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition, pp. 98–104 (1998)Google Scholar
  9. 9.
    Finlayson, G., Hordley, S.: Colour by correlation: a simple, unifying framework for colour constancy. IEEE Trans. on PAMI 23(11), 1209–1221 (2001)Google Scholar
  10. 10.
    Gowda, I.G., Kirkpatrick, D.G., Lee, D.T., Naamad, A.: Dynamic Voronoi diagrams. IEEE Trans. on Information Theory  IT-29(5) (September 1983)Google Scholar
  11. 11.
    Huet, B., Hancock, E.R.: Relational object recognition from large structural libraries. Pattern Recognition 35, 1895–1915 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  13. 13.
    Kragié, D., Christensen, H.I.: Cue integration for visual servoing. IEEE Trans. on Robotics and Automation 17(1) (Febraury 2001)Google Scholar
  14. 14.
    Malik, J., Belongie, S., Shi, J., Leung, T.: Textons, contours and regions: cue integration in image segmentation. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 918–925 (September 1999)Google Scholar
  15. 15.
    Nayar, S., Nene, S., Murase, H.: Subspace methods for robot vision. IEEE trans. on Robotics and Automation 12(5), 750–758 (1996)CrossRefGoogle Scholar
  16. 16.
    Sanfeliu, A., Alquezar, R., Andrade, J., Climent, J., Serratosa, F., Verges, J.: Graph-based representations and techniques for image processing and image analysis. Pattern Recognition 35, 639–650 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sanfeliu, A., Serratosa, F.: Learning and recognising 3D models represented by múltiple views by means of methods based on random graphs. IEEE Int. Conference on Image Processing, Barcelona 2003 (ICIP (September 2003)Google Scholar
  18. 18.
    Sanfeliu, A., Serratosa, F., Alquezar, R.: Second-order graphs for modelling sets of attributed graphs and their application to object learning and recognition. Int. J. Pattern Recognition and Artificial Intelligence 18(3) (2004) (in press)Google Scholar
  19. 19.
    Sengupta, K., Boyer, K.L.: Organizing large structural model bases. IEEE Trans. on PAMI 17(4), 321–331 (1995)Google Scholar
  20. 20.
    Serratosa, F., Alquezar, R., Sanfeliu, A.: Function-described graphs for modelling objects represented by sets of attributed graphs. Pattern Recognition 36, 781–798 (2003)CrossRefGoogle Scholar
  21. 21.
    Serratosa, F., Grau, T., Sanfeliu, A.: Distance between 2D-scenes base on oriented matroid theory. In: Proc. of the International Conference on Pattern Recognition, ICPR 2004, Cambridge (August 23-26, 2004)Google Scholar
  22. 22.
    Staffetti, E., Grau, A., Serratosa, F., Sanfeliu, A.: Shape representation and indexing based on region connection calculus and oriented matroid theory. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 267–276. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Umeyama, S.: An eigendecomposition approach to weighet graph matching problems. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5) (September 1988)Google Scholar
  24. 24.
    Vergés-LLahí, J., Sanfeliu, A.: Colour constancy algorithm based on object function minimization. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 8-14, vol. 1, pp. 511–518 (2001)Google Scholar
  26. 26.
    Xu, L., King, I.: A PCA approach for fast retrieval of structural patterns in attributed graphs. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 31(5) (October 2001)Google Scholar
  27. 27.
    Wong, A.K.C., You, M.: Entropy and distance of random graphs with application to structural pattern recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 7, 599–609 (1985)zbMATHCrossRefGoogle Scholar
  28. 28.
    Wong, E.K.: Model matching in robot vision by sub-graph isomorphism. Pattern Recognition 25, 287–304 (1994)CrossRefGoogle Scholar
  29. 29.
    Zhang, H., Yan, H.: Graphic matching based on costrained Voronoi diagrams. In: Proceedings of the Fifth International Symposium on Sygnal Processing and its Applications, Brisbane (August 22-25, 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alberto Sanfeliu
    • 1
  1. 1.Institut de Robòtica i Informàtica Industrial (UPC-CSIC)Universitat Politècnica de Catalunya (UPC) 

Personalised recommendations