Advertisement

An Error-Tolerant Approximate Matching Algorithm for Attributed Planar Graphs and Its Application to Fingerprint Classification

  • Michel Neuhaus
  • Horst Bunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)

Abstract

Graph edit distance is a powerful error-tolerant similarity measure for graphs. For pattern recognition problems involving large graphs, however, the high computational complexity makes it sometimes impossible to apply edit distance algorithms. In the present paper we propose an efficient algorithm for edit distance computation of planar graphs. Given graphs embedded in the plane, we iteratively match small subgraphs by locally optimizing structural correspondences. Eventually we obtain a valid edit path and hence an upper bound of the edit distance. To demonstrate the efficiency of our approach, we apply the proposed algorithm to the problem of fingerprint classification.

Keywords

Planar Graph Edit Distance Graph Match Edit Operation Pattern Recognition Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19, 255–259 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Fernandez, M.L., Valiente, G.: A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recognition Letters 22, 753–758 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Wallis, W., Shoubridge, P., Kraetzl, M., Ray, D.: Graph distances using graph union. Pattern Recognition Letters 22, 701–704 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13, 353–363 (1983)zbMATHGoogle Scholar
  5. 5.
    Messmer, B., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 493–504 (1998)CrossRefGoogle Scholar
  6. 6.
    Hopcroft, J., Wong, J.: Linear time algorithm for isomorphism of planar graphs. In: Proc. 6th Annual ACM Symposium on Theory of Computing, pp. 172–184 (1974)Google Scholar
  7. 7.
    Luks, E.: Isomorphism of graphs of bounded valence can be tested in ploynomial time. Journal of Computer and Systems Sciences 25, 42–65 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: On graphs with unique node labels. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 13–23. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Lumini, A., Maio, D., Maltoni, D.: Inexact graph matching for fingerprint classification. Machine Graphics and Vision, Special Issue on Graph Transformations in Pattern Generation and CAD 8, 231–248 (1999)Google Scholar
  10. 10.
    Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging and its application to diatom identification. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Bunke, H., Bühler, U.: Applications of approximate string matching to 2D shape recognition. Pattern Recognition 26, 1797–1812 (1993)CrossRefGoogle Scholar
  12. 12.
    Lladós, J., Martí, E., Villanueva, J.: Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1137–1143 (2001)CrossRefGoogle Scholar
  13. 13.
    Peris, G., Marzal, A.: Fast cyclic edit distance computation with weighted edit costs in classification. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proc. 16th Int. Conf. on Pattern Recognition, vol. 4, pp. 184–187 (2002)Google Scholar
  14. 14.
    Mollineda, R., Vidal, E., Casacuberta, F.: A windowed weighted approach for approximate cyclic string matching. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proc. 16th Int. Conf. on Pattern Recognition, pp. 188–191 (2002)Google Scholar
  15. 15.
    Robles-Kelly, A., Hancock, E.: String edit distance, random walks and graph matching. In: Int. Journal of Pattern Recognition and Artificial Intelligence (2004) (to appear)Google Scholar
  16. 16.
    Kawagoe, M., Tojo, A.: Fingerprint pattern classification. Pattern Recognition 17, 295–303 (1984)CrossRefGoogle Scholar
  17. 17.
    Karu, K., Jain, A.: Fingerprint classification. Pattern Recognition 29, 389–404 (1996)CrossRefGoogle Scholar
  18. 18.
    Rao, K., Balck, K.: Type classification of fingerprints: A syntactic approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 223–231 (1980)CrossRefGoogle Scholar
  19. 19.
    Jain, A., Prabhakar, S., Hong, L.: A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 348–359 (1999)CrossRefGoogle Scholar
  20. 20.
    Wilson, C., Candela, G., Watson, C.: Neural network fingerprint classification. Journal of Artificial Neural Networks 1, 203–228 (1994)Google Scholar
  21. 21.
    Marcialis, G., Roli, F., Serrau, A.: Fusion of statistical and structural fingerprint classifiers. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 310–317. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Watson, C., Wilson, C.: NIST Special Database 4. Fingerprint Database (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michel Neuhaus
    • 1
  • Horst Bunke
    • 1
  1. 1.Department of Computer ScienceUniversity of BernBernSwitzerland

Personalised recommendations