In this paper, we define clusters and the boundary curves of clusters in a random point set using the Delaunay triangulation and the principal curve analysis. The principal curve analysis is a generalization of principal axis analysis, which is a standard method for data analysis in pattern recognition.


Boundary Curve Principal Curve Random Point Delaunay Triangulation Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amenta, N., Bern, M., Eppstein, D.: The crust and the β- skeleton:Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)CrossRefGoogle Scholar
  2. 2.
    Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. CVIU 67, 261–273 (1997)Google Scholar
  3. 3.
    Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 119–132. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Hasite, T., Stuetzle, T.: Principal curves. J. Am. Statistical Assoc. 84, 502–516 (1989)CrossRefGoogle Scholar
  5. 5.
    Kégl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE PAMI 22, 281–297 (2000)Google Scholar
  6. 6.
    Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5, 927–935 (1992)CrossRefGoogle Scholar
  7. 7.
    Imiya, A., Ootani, H., Kawamoto, K.: Linear manifolds analysis: Theory and algorithm. Neurocomputing 57, 171–187 (2004)CrossRefGoogle Scholar
  8. 8.
    Imiya, A., Kawamoto, K.: Learning dimensionality and orientations of 3D objects. Pattern Recognition Letters 22, 75–83 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Silverman, B.W.: Some aspects of the spline smoothing approach to nonparametric regression curve fitting. J. R. Statist. Soc, B. 47, 1–52 (1985)zbMATHGoogle Scholar
  10. 10.
    Bookstein, F.L.: The line-skeleton. CVGIP 11, 1233–1237 (1979)Google Scholar
  11. 11.
    Rosenfeld, A.: Axial representations of shapes. CVGIP 33, 156–173 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Atsushi Imiya
    • 1
  • Ken Tatara
    • 2
  1. 1.Institute of Media and Information TechnologyChiba UniversityChibaJapan
  2. 2.School of Science and TechnologyChiba UniversityChibaJapan

Personalised recommendations