Algorithms for Constructing Min-Max Partitions of the Parameter Space for MDL Inference

  • Adriana Vasilache
  • Ioan Tăbuş
  • Jorma Rissanen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3138)


In this paper we present several algorithms for the construction of min-max optimal partitions of the parameter space. Two interpretations of the problem lead to two families of practical algorithms that are tested and compared.


  1. 1.
    Rissanen, J., Tăbuş, I.: Kolmogorov’s structure function in MDL theory and lossy data compression. In: Advances in Minimum Description Length: Theory and Applications, MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Rissanen, J.: Lectures on statistical modeling theory. Lecture notes, Tampere University of Technology (2003) Google Scholar
  3. 3.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall International, Inc., Englewood Cliffs (1993)zbMATHGoogle Scholar
  4. 4.
    Li, J., Chaddha, N., Gray, R.M.: Asymptotic performance of vector quantizers with a perceptual distortion measure. IEEE Trans. on Information Theory 45, 1082–1091 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Sinkkonen, J., Kaski, S., Nikkilä, J.: Discriminative clustering: optimal contigency tables by learning metrics. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) Proceedings of the 13th European Conference on Machine Learning. LNCS (LNAI), pp. 418–430 (2002)Google Scholar
  6. 6.
    Kohonen, T.: Self organization and associative memory, 3rd edn. Springer, Berlin (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Adriana Vasilache
    • 1
  • Ioan Tăbuş
    • 1
  • Jorma Rissanen
    • 1
  1. 1.Tampere University of TechnologyTampereFinland

Personalised recommendations