Dynamics of Storage and Recall in Hippocampal Associative Memory Networks

  • Bruce P. Graham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3146)


A major challenge to understanding cortical function is the complexity found both at the single cell and microcircuit levels. This review covers theoretical studies aimed at elucidating dynamic signal processing within hippocampal pyramidal cells. This processing involves both the intrinsic pyramidal cell properties as well as the microcircuit of inhibitory interneurons that synapse onto the cell. These factors are considered within the framework of associative memory function in areas CA1 and CA3 of the mammalian hippocampus.


Pyramidal Cell Entorhinal Cortex Associative Memory Dendritic Tree Medial Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, W.C., Mason-Parker, S.E., Bear, M.F., Webb, S.: andW.P. Tate. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc. Nat. Acad. Sci. 98, 10924–10929 (2001)CrossRefGoogle Scholar
  2. 2.
    Andrásfalvy, B.K., Magee, J.C.: Distance-dependent increase in ampa receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J. Neurosci. 21, 9151–9159 (2001)Google Scholar
  3. 3.
    Aradi, I., Soltesz, I.: Modulation of network behaviour by changes in variance in interneuronal properties. J. Physiol. 538, 227–251 (2002)CrossRefGoogle Scholar
  4. 4.
    Barkai, E., Hasselmo, M.E.: Modulation of the input/output function of rat piriform cortex pyramidal cells. J. Neurophys. 72, 644–658 (1994)Google Scholar
  5. 5.
    Bi, G.-q., Poo, M.-m.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)Google Scholar
  6. 6.
    Borg-Graham, L.J.: Interpretations of data and mechanisms for hippocampal pyramidal cell models. In: Ulinski, P.S., Jones, E.G., Peters, A. (eds.) Cerebral Cortex: Cortical Models, vol. 13, Plenum Press, New York (1998)Google Scholar
  7. 7.
    Buzsáki, G.: Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989)CrossRefGoogle Scholar
  8. 8.
    Buzsáki, G.: Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002)CrossRefGoogle Scholar
  9. 9.
    Buzsáki, G., Chrobak, J.J.: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995)CrossRefGoogle Scholar
  10. 10.
    Castellani, G.C., Quinlan, E.M., Cooper, L.N., Shouval, H.Z.: A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc. Nat. Acad. Sci. 98, 12772–12777 (2001)CrossRefGoogle Scholar
  11. 11.
    Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O., Somogyi, P.: Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995)CrossRefGoogle Scholar
  12. 12.
    Fellous, J.-M., Linster, C.: Computational models of neuromodulation. Neural Comp. 10, 771–805 (1998)CrossRefGoogle Scholar
  13. 13.
    Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O.: Cholinergic induction of network oscillations at 40Hz in the hippocampus in vitro. Nature 394, 186–189 (1998)CrossRefGoogle Scholar
  14. 14.
    Földy, C., Aradi, I., Howard, A., Soltesz, I.: Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Euro. J. Neurosci. 19, 119–130 (2003)CrossRefGoogle Scholar
  15. 15.
    Fránsen, E., Lansner, A.: A model of cortical associative memory based on a horizontal network of connected columns. Network 9, 235–264 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Freund, T.F.: Rhythm and mood in perisomatic inhibition. TINS 26, 489–495 (2003)Google Scholar
  17. 17.
    Freund, T.F., Buzsáki, G.: Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996)CrossRefGoogle Scholar
  18. 18.
    Goldberg, J., Holthoff, K., Yuste, R.: A problem with Hebb and local spikes. TINS 25, 433–435 (2002)Google Scholar
  19. 19.
    Graham, B.P.: Pattern recognition in a compartmental model of a CA1 pyramidal neuron. Network 12, 473–492 (2001)Google Scholar
  20. 20.
    Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G., Buzsáki, G.: Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003)CrossRefGoogle Scholar
  21. 21.
    Hasselmo, M.E.: Acetylcholine and learning in a cortical associative memory. Neural Comp. 5, 32–44 (1993)CrossRefGoogle Scholar
  22. 22.
    Hasselmo, M.E., Anderson, B.P., Bower, J.M.: Cholinergic modulation of cortical associative memory function. J. Neurophys. 67, 1230–1246 (1992)Google Scholar
  23. 23.
    Hasselmo, M.E., Bodelon, C., Wyble, B.P.: A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comp. 14, 793–817 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Hasselmo, M.E., Bower, J.M.: Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophys. 67, 1222–1229 (1992)Google Scholar
  25. 25.
    Hasselmo, M.E., Fehlau, B.P.: Differences in time course of ACh and GABA modulation of excitatory synaptic potentials in slices of rat hippocampus. J. Neurophys. 86, 1792–1802 (2001)Google Scholar
  26. 26.
    Hasselmo, M.E., Hay, J., Ilyn, M., Gorchetchnikov, A.: Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks 15, 689–707 (2002)CrossRefGoogle Scholar
  27. 27.
    Hasselmo, M.E., Schnell, E.: Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J. Neurosci. 14, 3898–3914 (1994)Google Scholar
  28. 28.
    Hasselmo, M.E., Schnell, E., Barkai, E.: Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J. Neurosci. 15, 5249–5262 (1995)Google Scholar
  29. 29.
    Hoffman, D.A., Johnston, D.: Neuromodulation of dendritic action potentials. J. Neurophys. 81, 408–411 (1999)Google Scholar
  30. 30.
    Hoffman, D.A., Magee, J.C., Colbert, C.M., Johnston, D.: K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997)CrossRefGoogle Scholar
  31. 31.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Hu, H., Vervaeke, V., Storm, J.F.: Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J. Physiol. 545, 783–805 (2002)CrossRefGoogle Scholar
  33. 33.
    Hutcheon, B., Yarom, Y.: Resonance, oscillation and the intrinsic frequency preferences of neurons. TINS 23, 216–222 (2000)Google Scholar
  34. 34.
    Ishizuka, N., Cowan, W.M., Amaral, D.G.: A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362, 17–45 (1995)CrossRefGoogle Scholar
  35. 35.
    Jensen, O.: Information transfer between rhythmically coupled networks: reading the hippocampal phase code. Neural Comp. 13, 2743–2761 (2001)zbMATHCrossRefGoogle Scholar
  36. 36.
    Jensen, O., Idiart, M.A.P., Lisman, J.E.: Phyiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learning & Memory 3, 243–256 (1996)CrossRefGoogle Scholar
  37. 37.
    Jensen, O., Lisman, J.E.: Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learning & Memory 3, 264–278 (1996)CrossRefGoogle Scholar
  38. 38.
    Johnston, D., Magee, J.C., Colbert, C.M., Christie, B.R.: Active properties of neuronal dendrites. Ann. Rev. Neurosci. 19, 165–186 (1996)CrossRefGoogle Scholar
  39. 39.
    Káli, S., Dayan, P.: The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. J. Neurosci. 20, 7463–7477 (2000)Google Scholar
  40. 40.
    Karmarkar, U.R., Buonomano, D.V.: A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophys. 88, 507–513 (2002)Google Scholar
  41. 41.
    Klausberger, T., Magill, P.J., Márton, L.F., Roberts, J.D.B., Cobden, P.M., Buzsáki, G., Somogyi, P.: Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003)CrossRefGoogle Scholar
  42. 42.
    Kopysova, I.L., Debanne, D.: Critical role of axonal A-type K+ channels and axonal geometry in the gating of action potential propagation along CA3 pyramidal cell axons: a simulation study. J. Neurosci. 18, 7436–7451 (1998)Google Scholar
  43. 43.
    Levy, W.B.: A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6, 579–590 (1996)CrossRefGoogle Scholar
  44. 44.
    Lisman, J.E.: Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999)CrossRefGoogle Scholar
  45. 45.
    Lisman, J.E., Idiart, M.A.P.: Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1514 (1995)CrossRefGoogle Scholar
  46. 46.
    Maccaferri, G., Lacaille, J.-C.: Hippocampal interneuron classifications - making things as simple as possible, not simpler. TINS 26, 564–571 (2003)Google Scholar
  47. 47.
    Magee, J.C.: Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998)Google Scholar
  48. 48.
    Magee, J.C.: Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999)CrossRefGoogle Scholar
  49. 49.
    Magee, J.C., Cook, E.P.: Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000)CrossRefGoogle Scholar
  50. 50.
    Magee, J.C., Hoffman, D., Colbert, C., Johnston, D.: Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Ann. Rev. Physiol. 60, 327–346 (1998)CrossRefGoogle Scholar
  51. 51.
    Marr, D.: Simple memory: a theory for archicortex. Phil. Trans. Roy. Soc. Lond. B 262, 23–81 (1971)CrossRefGoogle Scholar
  52. 52.
    McBain, C.J., Fisahn, A.: Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001)CrossRefGoogle Scholar
  53. 53.
    McNaughton, B.L., Morris, R.G.M.: Hippocampal synaptic enhancement and information storage within a distributed memory system. TINS 10, 408–415 (1987)Google Scholar
  54. 54.
    Melamed, O., Gerstner, W., Maass, W., Tsodyks, M., Markram, H.: Coding and learning of behavioural sequences. TINS 27, 11–14 (2004)Google Scholar
  55. 55.
    Menschik, E.D., Finkel, L.H.: Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artif. Intell. Med. 13, 99–121 (1998)CrossRefGoogle Scholar
  56. 56.
    Migliore, M.: Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. Biophys. J. 71, 2394–2403 (1996)CrossRefGoogle Scholar
  57. 57.
    Migliore, M.: On the integration of subthreshold inputs from perforant path and Schaffer collaterals in hippocampal CA1 pyramidal neurons. J. Comput. Neurosci. 14, 185–192 (2003)CrossRefGoogle Scholar
  58. 58.
    Migliore, M., Hoffman, D.A., Magee, J.C., Johnston, D.: Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7, 5–15 (1999)zbMATHCrossRefGoogle Scholar
  59. 59.
    Migliore, M., Shepherd, G.M.: Emerging rules for the distributions of active dendritic conductances. Nat. Rev. Neurosci. 3, 362–370 (2002)CrossRefGoogle Scholar
  60. 60.
    O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993)CrossRefGoogle Scholar
  61. 61.
    Orbán, G., Kiss, T., Lengyel, M., Érdi, P.: Hippocampal rhythm generation: gamma-related theta-frequency resonance in CA3 interneurons. Biol. Cybern. 84, 123–132 (2001)CrossRefGoogle Scholar
  62. 62.
    Paulsen, O., Moser, E.I.: A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. TINS 21, 273–279 (1998)Google Scholar
  63. 63.
    Pike, F.G., Goddard, R.S., Suckling, J.M., Ganter, P., Kasthuri, N., Paulsen, O.: Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. 529, 205–213 (2000)CrossRefGoogle Scholar
  64. 64.
    Poirazi, P., Brannon, T., Mel, B.W.: Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003)CrossRefGoogle Scholar
  65. 65.
    Poirazi, P., Brannon, T., Mel, B.W.: Pyramidal neuron as a two-layer neural network. Neuron 37, 989–999 (2003)CrossRefGoogle Scholar
  66. 66.
    Rasmusson, D.D.: The role of acetylcholine in cortical synaptic plasticity. Behav. Brain Res. 115, 205–218 (2000)CrossRefGoogle Scholar
  67. 67.
    Remondes, M., Schuman, E.M.: Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature 416, 736–740 (2002)CrossRefGoogle Scholar
  68. 68.
    Samsonovich, A., McNaughton, B.L.: Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997)Google Scholar
  69. 69.
    Santoro, B., Baram, T.Z.: The multiple personalities of h-channels. TINS 26, 550–554 (2003)Google Scholar
  70. 70.
    Saudargiene, A., Porr, B., Worgotter, F.: How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comp. 16(3) (2003)Google Scholar
  71. 71.
    Shouval, H.Z., Bear, M.F., Cooper, L.N.: A unified model of NMDA receptordependent bidirectional synaptic plasticity. Proc. Nat. Acad. Sci. 99, 10831–10836 (2002)CrossRefGoogle Scholar
  72. 72.
    Sommer, F.T., Wennekers, T.: Modelling studies on the computational function of fast temporal structure in cortical circuit activity. J. Physiol (Paris) 94, 473–488 (2000)CrossRefGoogle Scholar
  73. 73.
    Sommer, F.T., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Networks 14, 825–834 (2001)CrossRefGoogle Scholar
  74. 74.
    Sourdet, V., Debanne, D.: The role of dendritic filtering in associative long-term synaptic plasticity. Learning & Memory 6, 422–447 (1999)CrossRefGoogle Scholar
  75. 75.
    Stuart, G.J., Sakmann, B.: Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994)CrossRefGoogle Scholar
  76. 76.
    Stuart, G.J., Spruston, N., Sakmann, B., Hausser, M.: Action potential initiation and backpropagation in neurons of the mammalian CNS. TINS 20, 125–131 (1997)Google Scholar
  77. 77.
    Traub, R.D., Jefferys, J.G.R., Miles, R., Whittington, M.A., Tóth, K.: A branching dendritic model of a rodent CA3 pyramidal neurone. J. Physiol. 481, 79–95 (1994)Google Scholar
  78. 78.
    Traub, R.D., Jefferys, J.G.R., Whittington, M.A.: Fast oscillations in cortical circuits. MIT Press, Cambridge (1999)Google Scholar
  79. 79.
    Traub, R.D., Miles, R.: Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J. Comput. Neurosci. 2, 291–298 (1995)CrossRefGoogle Scholar
  80. 80.
    Treves, A., Rolls, E.T.: Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994)CrossRefGoogle Scholar
  81. 81.
    Tsodyks, M.V.: Attractor neural network models of spatial maps in hippocampus. Hippocampus 9, 481–489 (1999)CrossRefGoogle Scholar
  82. 82.
    Wallenstein, G.V., Hasselmo, M.E.: GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J. Neurophys. 78, 393–408 (1997)Google Scholar
  83. 83.
    Wang, X.-J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)Google Scholar
  84. 84.
    Willshaw, D., Dayan, P.: Optimal plasticity from matrix memories: what goes up must come down. Neural Comp. 2, 85–93 (1990)CrossRefGoogle Scholar
  85. 85.
    Yuste, R., Majewska, A., Holthoff, K.: From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653–659 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bruce P. Graham
    • 1
  1. 1.Department of Computing Science and MathematicsUniversity of StirlingStirlingUK

Personalised recommendations