Advertisement

Representing Nested Inductive Types Using W-Types

  • Michael Abbott
  • Thorsten Altenkirch
  • Neil Ghani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

We show that strictly positive inductive types, constructed from polynomial functors, constant exponentiation and arbitrarily nested inductive types exist in any Martin-Löf category (extensive locally cartesian closed category with W-types) by exploiting our work on container types. This generalises a result by Dybjer (1997) who showed that non-nested strictly positive inductive types can be represented using W-types. We also provide a detailed analysis of the categorical infrastructure needed to establish the result.

Keywords

Type Theory Natural Transformation Left Adjoint Elimination Rule Inductive Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, M.: Categories of Containers. PhD thesis, University of Leicester (2003)Google Scholar
  2. Abbott, M., Altenkirch, T., Ghani, N.: Categories of containers. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 23–38. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. Abbott, M., Altenkirch, T., Ghani, N.: Representing strictly positive types. Presented at APPSEM annual meeting, invited for submission to Theoretical Computer Science (2004)Google Scholar
  4. Abel, A., Altenkirch, T.: Apredicative strong normalisation proof for a λ-calculus with interleaving inductive types. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.) TYPES 1999. LNCS, vol. 1956, pp. 21–40. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. Dybjer, P.: Representing inductively defined sets by wellorderings in Martin-Löf’s type theory. Theoretical Computer Science 176, 329–335 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In: Typed Lambda Calculus and Applications, pp. 129–146 (1999)Google Scholar
  7. Dybjer, P., Setzer, A.: Indexed induction-recursion. In: Kahle, R., Schroeder-Heister, P., Stärk, R.F. (eds.) PTCS 2001. LNCS, vol. 2183, p. 93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 210–225. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics, vol. 141. Elsevier, Amsterdam (1999)zbMATHGoogle Scholar
  11. Johnstone, P.T.: Topos Theory. Academic Press, London (1977)zbMATHGoogle Scholar
  12. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)zbMATHGoogle Scholar
  13. Moerdijk, I., Palmgren, E.: Wellfounded trees in categories. Annals of Pure and Applied Logic 104, 189–218 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type Theory. International Series of Monographs on Computer Science, vol. 7. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  15. Streicher, T.: Semantics of Type Theory. Progress in Theoretical Computer Science. Birkhäuser, Basel (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Abbott
    • 1
  • Thorsten Altenkirch
    • 2
  • Neil Ghani
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Leicester 
  2. 2.School of Computer Science and Information TechnologyNottingham University 

Personalised recommendations