Skip to main content

Nash Equilibria in Discrete Routing Games with Convex Latency Functions

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We study Nash equilibria in a discrete routing game that combines features of the two most famous models for non-cooperative routing, the KP model [16] and the Wardrop model [27]. In our model, users share parallel links. A user strategy can be any probability distribution over the set of links. Each user tries to minimize its expected latency, where the latency on a link is described by an arbitrary non-decreasing, convex function. The social cost is defined as the sum of the users’ expected latencies. To the best of our knowledge, this is the first time that mixed Nash equilibria for routing games have been studied in combination with non-linear latency functions.

As our main result, we show that for identical users the social cost of any Nash equilibrium is bounded by the social cost of the fully mixed Nash equilibrium. A Nash equilibrium is called fully mixed if each user chooses each link with non-zero probability. We present a complete characterization of the instances for which a fully mixed Nash equilibrium exists, and prove that (in case of its existence) it is unique. Moreover, we give bounds on the coordination ratio and show that several results for the Wardrop model can be carried over to our discrete model.

This work has been partially supported by the European Union within the 6th Framework Programme under contract 001907 (DELIS), by the IST Program of the European Union under contract number IST-2001-33116 (FLAGS), by funds from the Joint Program of Scientific and Technological Collaboration between Greece and Cyprus, by research funds at University of Cyprus, and by the VEGA grant No. 2/3164/23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  3. Beckmann, M.J.: On the theory of traffic flow in networks. Traffic Quart 21, 109–116 (1967)

    Google Scholar 

  4. Bell, E.T.: Exponential numbers. American Mathematical Monthly 41(7), 411–419 (1934)

    Article  MathSciNet  Google Scholar 

  5. Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms. In: Proc. of the 34th Ann. ACM Symp. on Theory of Computing, pp. 287–296 (2002)

    Google Scholar 

  7. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. of the 13th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 413–420 (2002)

    Google Scholar 

  8. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. Journal of Research of the National Bureau of Standards - B. Mathematical Sciences 73B(2), 91–118 (1969)

    MathSciNet  Google Scholar 

  9. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Selfish routing in non-cooperative networks: A survey. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 21–45. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Extreme nash equilibria. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics 17(2), 416–429 (1969)

    Article  MATH  Google Scholar 

  14. Hochbaum, D.S., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. Theory of Computing Systems 36(6), 683–693 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  18. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which is the worst-case nash equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 551–561. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: Proc. of the 33rd Ann. ACM Symp. on Theory of Computing, pp. 510–519 (2001)

    Google Scholar 

  21. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and economic behavior 13, 111–124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  23. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. Journal of Game Theory 2, 65–67 (1973)

    Article  MATH  Google Scholar 

  24. Roughgarden, T.: Stackelberg scheduling strategies. In: Proc. of the 33rd Ann. ACM Symp. on Theory of Computing, pp. 104–113 (2001)

    Google Scholar 

  25. Roughgarden, T.: The price of anarchy is independent of the network topology. In: Proc. of the 34th Ann. ACM Symp. on the Theory of Computing, pp. 428–437 (2002)

    Google Scholar 

  26. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  27. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. of the Institute of Civil Engineers, Pt. II 1, 325–378 (1956)

    Google Scholar 

  28. Wilf, H.S.: Generatingfunctionology. Academic Press, London (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M. (2004). Nash Equilibria in Discrete Routing Games with Convex Latency Functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics