Advertisement

Grammar Compression, LZ-Encodings, and String Algorithms with Implicit Input

  • Wojciech Rytter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

We survey several complexity issues related to algorithmic problems on words given in an implicit way: by a grammar, LZ-encoding or as a minimal solution of a word equation. We discuss the relation between two implicit representations, the role of word compression in solvability of word equations and compressed language recognition problems. The grammar compression is more convenient than LZ-encoding, its size differs from that of LZ-encoding by at most logarithmic factor, the constructive proof is based on the concept similar to balanced trees.

Keywords

Regular Expression Regular Language Implicit Representation Parse Tree Terminal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, A., Benson, G., Farach, M.: Let sleeping files lie: pattern-matching in Zcompressed files. In: SODA (1994)Google Scholar
  2. 2.
    Amir, A., Benson, G.: Efficient two dimensional compressed matching. In: Proc. of the 2nd IEEE Data Compression Conference, pp. 279–288 (1992)Google Scholar
  3. 3.
    Amir, A., Benson, G., Farach, M.: Optimal two-dimensional compressed matching. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 215–225. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Angluin, D.: Finding patterns common to a set of strings. J.C.S.S. 21(1), 46–62 (1980)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Apostolico, A., Leonardi, S.: Some theory and practice of greedy off-line textual substitution. In: DCC 1998, pp. 119–128 (1998)Google Scholar
  6. 6.
    Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A., Sahai, A., Shelat, A.: Approximating The Smallest Grammar: Kolmogorov Complexity in Natural Models. In: STOC 2002 (2002)Google Scholar
  7. 7.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Crochemore, M., Rytter, W.: Jewels of stringology - Text algorithms. World Scientific, Singapore (2003)zbMATHGoogle Scholar
  9. 9.
    Eyono Obono, S., Goralcik, P., Maksimenko, M.: Efficient solving of the word equations in one variable. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841, Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Farah, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. In: STOC 1995, pp. 703–712 (1995)Google Scholar
  11. 11.
    Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS 1997 (1997)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Ga̧sieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Efficient algorithms for compressed strings. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Ga̧sieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Randomized Efficient Algorithms for Compressed Strings: the finger-print approach. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 39–49. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Gasieniec, L., Rytter, W.: Almost optimal fully compressed LZW-matching. In: Data Compression Conference, IEEE Computer Society, Los Alamitos (1999)Google Scholar
  16. 16.
    Gasieniec, L., Gibbons, A., Rytter, W.: The parallel complexity of pattern-searching in highly compressed texts. In: MFCS (1999)Google Scholar
  17. 17.
    Hirao, M., Shinohara, A., Takeda, M., Arikawa, S.: Faster fully compressed pattern matching algorithm for balanced straight-line programs. In: Proc. of 7th International Symposium on String Processing and Information Retrieval (SPIRE 2000), September 2000, pp. 132–138. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  18. 18.
    Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word equations. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 98–109. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Karkkainen, J., Sanders, P.: Simple linear work suffix array construction. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Karpinski, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short description. In: Combinatorial Pattern Matching (1995)Google Scholar
  21. 21.
    Kida, T., Shibara, Y., Takeda, M., Shinohara, A., Arikawa, S.: A unifying framework for compressed pattern matching. In: SPIRE 1999 (1999)Google Scholar
  22. 22.
    Knuth, D.: The Art of Computing, 2nd edn. Addison-Wesley, Reading (1981)Google Scholar
  23. 23.
    Koscielski, A., Pacholski, L.: Complexity of Makanin’s algorithm, J. ACM 43(4), 670–684 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kieffer, J., Yang, E.: Grammar-based codes: a new class of universal lossless source codes. IEEE Trans. on Inf. Theory 46, 737–754 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lanctot, J.K.: Ming Li, En-hui Yang, Estimating DNA Sequence Entropy. In: SODA 2000 (2000)Google Scholar
  26. 26.
    Lehman, E., Shelat, A.: Approximation algorithms for grammar-based compression. In: SODA 2002 (2002)Google Scholar
  27. 27.
    Lempel, J.: Ziv, On the complexity of finite sequences. IEEE Trans. on Inf. Theory 22, 75–81 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lohrey, M.: Word problems on compressed words ICALP 2004 (2004)Google Scholar
  29. 29.
    Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mat. Sb. 103(145), 147–233 (1977)MathSciNetGoogle Scholar
  30. 30.
    Manber, U.: A text compression scheme that allows fast searching directly in the compressed file. ACM Transactions on Information Systems 15(2), 124–136 (1997)CrossRefGoogle Scholar
  31. 31.
    Markey, N., Schnoebelen, P.: A P-Time complete matching problem for SLPcompressed words. In: IPL 2004 (2004)Google Scholar
  32. 32.
    Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern-matching algorithm for strings in terms of straight-line programs. Journal of Discrete Algorithms 1, 187–204 (2000)MathSciNetGoogle Scholar
  33. 33.
    Plandowski, W.: Satisfiability of word equations with constants is in P-Space. JACM (2004)Google Scholar
  34. 34.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  35. 35.
    Plandowski, W., Rytter, W.: Complexity of compressed recognition of formal languages. In: Karhumaki, J. (ed.) Jewels forever, Springer, Heidelberg (1999)Google Scholar
  36. 36.
    Plandowski, W., Rytter, W.: Applying Lempel-Ziv encodings to the solution of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 731. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  37. 37.
    Rytter, W.: Application of Lempel-Ziv Factorization to the Approximation of Grammar-Based Compression. TCS 1-3(299), 763–774 (2003); Preliminary version in Combinatorial Pattern Matching (June 2002)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Rytter, W.: Compressed and fully compressed pattern-matching in one and twodimensions. Proceedings of IEEE 88(11), 1769–1778 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wojciech Rytter
    • 1
    • 2
  1. 1.Instytut InformatykiWarsaw UniversityPoland
  2. 2.Department of Computer ScienceNJITUSA

Personalised recommendations