Feasible Proofs and Computations: Partnership and Fusion

  • Alexander A. Razborov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)


A computation or a proof is called feasible if it obeys prescribed bounds on the resources consumed during its execution. It turns out that when restricted to this world of feasibility, proofs and computations become extremely tightly interrelated, sometimes even indistinguishable. Moreover, many of these rich relations, underlying concepts, techniques etc. look very different from their “classical” counterparts, or simply do not have any. This talk is intended as a very informal and popular (highly biased as well) attempt to illustrate these fascinating connections by several related developments in the modern complexity theory.


Proof System Propositional Formula Pseudorandom Generator Interactive Proof Propositional Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekhnovich, M., Ben-Sasson, E., Razborov, A., Wigderson, A.: Pseudorandom generators in propositional complexity. In: Proceedings of the 41st IEEE FOCS, pp. 43–53 (2000); Journal version to appear in SIAM Journal on ComputingGoogle Scholar
  2. 2.
    Alekhnovich, M., Razborov, A.: Resolution is not automatizable unless W[P] is tractable. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 210–219 (2001)Google Scholar
  3. 3.
    Alekhnovich, M., Razborov, A.: Lower bounds for the polynomial calculus: non-binomial case. Proceedings of the Steklov Institute of Mathematics 242, 18–35 (2003)MathSciNetGoogle Scholar
  4. 4.
    Arora, S.: The approximability of NP-hard problems. In: Proceedings of the 30th ACM Symposium on the Theory of Computing, pp. 337–348 (1998)Google Scholar
  5. 5.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability of approximation problems. In: Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science, pp. 13–22 (1992)Google Scholar
  6. 6.
    Arora, S., Safra, M.: Probabilistic checking of proofs: a new characterization of np. Journal of the ACM 45(1), 70–122 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Combinatorial optimization problems and their approximability properties. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  8. 8.
    Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th ACMSymposium on the Theory of Computing, pp. 421–429 (1985)Google Scholar
  9. 9.
    Babai, L.: Transparent proofs and limits to approximations. In: Proceedings of the First European Congress of Mathematics, vol. I, pp. 31–91. Birkhäuser, Basel (1994)Google Scholar
  10. 10.
    Babai, L., Fortnow, L., Lund, C., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd ACM Symposium on the Theory of Computing, pp. 21–31 (1991)Google Scholar
  11. 11.
    Beame, P., Pitassi, T.: Propositional proof complexity: Past, present and future. Technical Report TR98-067, Electronic Colloquium on Computational Complexity (1998), Available at
  12. 12.
    Bonet, M., Domingo, C., Gavaldá, R., Maciel, A., Pitassi, T.: Non-automatizability of bounded-depth Frege proofs. In: Proceedings of the 14th Annual IEEE Conference on Computational Complexity, pp. 15–23 (1999)Google Scholar
  13. 13.
    Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. Journal of Symbolic Logic 62(3), 708–728 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bonet, M., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Buss, S.R.: Bounded Arithmetic. Bibliopolis, Napoli (1986)Google Scholar
  16. 16.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing, pp. 151–158 (1971)Google Scholar
  17. 17.
    Cook, S.A., Reckhow, A.R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44(1), 36–50 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldreich, O.: Probabilistic proof systems. In: Proceedings of the International Congress of Mathematicians (Zurich, 1994), pp. 1395–1406. Birkhäuser, Basel (1995)Google Scholar
  20. 20.
    Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithms and Combinatorics, vol. 17. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1985)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Goldwasser, S., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity, and a methodology of cryptographic protocol design. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science, pp. 39–48 (1986)Google Scholar
  23. 23.
    Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  24. 24.
    Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic 59(1), 73–86 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Krajíček, J.: Bounded arithmetic, propositional logic and complexity theory. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  26. 26.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. Journal of Symbolic Logic 62(2), 457–486 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Krajíček, J.: On the weak pigeonhole principle. Fundamenta Mathematicae 170(1-3), 123–140 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Krajíček, J.: Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. Journal of Symbolic Logic 69(1), 265–286 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 142, 82–94 (1998)CrossRefGoogle Scholar
  30. 30.
    Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. Journal of the ACM 39(4), 859–868 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Parikh, R.J.: Existence and feasibility in arithmetic. Journal of Symbolic Logic 36, 494–508 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In: Methods in Mathematical Logic. Lecture Notes in Mathematics, vol. 1130, pp. 317–340. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  33. 33.
    Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–998 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Pudlák, P.: The lengths of proofs. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  35. 35.
    Raz, R.: Resolution lower bounds for the weak pigeonhole principle. Journal of the ACM 51(2), 115–138 (2004)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Razborov, A.: Bounded Arithmetic and lower bounds in Boolean complexity. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol. 13, pp. 344–386. Birkhaüser (1995)Google Scholar
  37. 37.
    Razborov, A.: Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic. Izvestiya of the RAN 59(1), 201–224 (1995)MathSciNetGoogle Scholar
  38. 38.
    Razborov, A.: Lower bounds for propositional proofs and independence results in Bounded Arithmetic. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 48–62. Springer, Heidelberg (1996)Google Scholar
  39. 39.
    Razborov, A.: Pseudorandom generators hard for k-DNF resolution and polynomial calculus resolution (2002), Manuscript available at
  40. 40.
    Razborov, A.: Resolution lower bounds for perfect matching principles. In: Proceedings of the 17th IEEE Conference on Computational Complexity, pp. 29–38 (2002)Google Scholar
  41. 41.
    Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55(1), 24–35 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Regan, K., Sivakumar, D., Cai, J.: Pseudorandom generators, measure theory, and natural proofs. In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pp. 26–35 (1995)Google Scholar
  43. 43.
    Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 85–93. Springer, Heidelberg (1997)Google Scholar
  44. 44.
    Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Tseitin, G.C.: On the complexity of derivations in propositional calculus. In: Studies in constructive mathematics and mathematical logic, Part II. Consultants Bureau, New-York- London (1968)Google Scholar
  46. 46.
    Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1, 425–467 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alexander A. Razborov
    • 1
  1. 1.Institute for Advanced StudySchool of MathematicsPrincetonUSA

Personalised recommendations