Advertisement

A PTAS for Embedding Hypergraph in a Cycle

  • Xiaotie Deng
  • Guojun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

We consider the problem of embedding hyperedges of a hypergraph as paths in a cycle such that the maximum congestion–the maximum number of paths that use any single edge in a cycle–is minimized. We settle the problem with a polynomial-time approximation scheme.

Keywords

Minimum congestion embedding hypergraph in a cycle computer application polynomial-time approximation scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic Design of Drugs Without Side-Effects. SIAM J. Comput. 32(4), 1073–1090 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Deng, X., Li, G., Wang, L.: Center and Distinguisher for Strings with Unbounded Alphabet. Journal of Combinatorial Optimization 6, 383–400 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Frank, A.: Edge-disjoint paths in planar graphs. J. Combin. Theory Ser. B 38, 164–178 (1985)CrossRefGoogle Scholar
  4. 4.
    Frank, A., Nishizeki, T., Saito, N., Suzuki, H., Tardos, E.: Algorithms for routing around a rectangle. Discrete Applied Mathematics 40, 363–378 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ganley, J.L., Cohoon, J.P.: Minimum-congestion hypergraph embedding on a cycle. IEEE Trans. on Computers 46(5), 600–602 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gonzalez, T.: Improved approximation algorithm for embedding hyperedges in a cycle. Information Processing Letters 67, 267–271 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gu, Q.P., Wang, Y.: Efficient algorithm for embedding hypergraph in a cycle. In: Proceedings of the 10th International Conference On High Performance Computing, Hyderabad, India, December 2003, pp. 85–94 (2003)Google Scholar
  8. 8.
    Khanna, S.: A Polynomial Time Approximation Scheme for the SONET Ring Loading Problem. Bell Labs Tech. J. 2, 36–41 (1997)CrossRefGoogle Scholar
  9. 9.
    Lee, S.L., Ho, H.J.: Algorithms and complexity for weighted hypergraph embedding in a cycle. In: Proc. of the 1st International Symposium on Cyber World, CW 2002 (2002)Google Scholar
  10. 10.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. JACM 49(2), 157–171 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Motwani, R., Raghavan, P.: Randomized algorithms. mbridge Univ. Press, CambridgeGoogle Scholar
  12. 12.
    Okamura, H., Seymour, P.D.: Multicommodity Flows in Planar Graph. Journal of Combinatorial Theory, Series B 31, 75–81 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schrijver, A., Seymour, P., Winkler, P.: The Ring Loading Problem. SIAM Discrete Mathematics 11(1), 1–14 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schrijver, A., Seymour, P., Winkler, P.: The Ring Loading Problem. SIAM Review 41(4), 777–791 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xiaotie Deng
    • 1
  • Guojun Li
    • 2
    • 3
  1. 1.City University of Hong KongHong Kong SARP. R. China
  2. 2.Institute of SoftwareChinese academy of SciencesBeijingP. R. China
  3. 3.School of Mathematics and System SciencesShandong UniversityJinanP. R. China

Personalised recommendations