A PTAS for Embedding Hypergraph in a Cycle

  • Xiaotie Deng
  • Guojun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)


We consider the problem of embedding hyperedges of a hypergraph as paths in a cycle such that the maximum congestion–the maximum number of paths that use any single edge in a cycle–is minimized. We settle the problem with a polynomial-time approximation scheme.


Minimum congestion embedding hypergraph in a cycle computer application polynomial-time approximation scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic Design of Drugs Without Side-Effects. SIAM J. Comput. 32(4), 1073–1090 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Deng, X., Li, G., Wang, L.: Center and Distinguisher for Strings with Unbounded Alphabet. Journal of Combinatorial Optimization 6, 383–400 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Frank, A.: Edge-disjoint paths in planar graphs. J. Combin. Theory Ser. B 38, 164–178 (1985)CrossRefGoogle Scholar
  4. 4.
    Frank, A., Nishizeki, T., Saito, N., Suzuki, H., Tardos, E.: Algorithms for routing around a rectangle. Discrete Applied Mathematics 40, 363–378 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ganley, J.L., Cohoon, J.P.: Minimum-congestion hypergraph embedding on a cycle. IEEE Trans. on Computers 46(5), 600–602 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gonzalez, T.: Improved approximation algorithm for embedding hyperedges in a cycle. Information Processing Letters 67, 267–271 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gu, Q.P., Wang, Y.: Efficient algorithm for embedding hypergraph in a cycle. In: Proceedings of the 10th International Conference On High Performance Computing, Hyderabad, India, December 2003, pp. 85–94 (2003)Google Scholar
  8. 8.
    Khanna, S.: A Polynomial Time Approximation Scheme for the SONET Ring Loading Problem. Bell Labs Tech. J. 2, 36–41 (1997)CrossRefGoogle Scholar
  9. 9.
    Lee, S.L., Ho, H.J.: Algorithms and complexity for weighted hypergraph embedding in a cycle. In: Proc. of the 1st International Symposium on Cyber World, CW 2002 (2002)Google Scholar
  10. 10.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. JACM 49(2), 157–171 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Motwani, R., Raghavan, P.: Randomized algorithms. mbridge Univ. Press, CambridgeGoogle Scholar
  12. 12.
    Okamura, H., Seymour, P.D.: Multicommodity Flows in Planar Graph. Journal of Combinatorial Theory, Series B 31, 75–81 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schrijver, A., Seymour, P., Winkler, P.: The Ring Loading Problem. SIAM Discrete Mathematics 11(1), 1–14 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schrijver, A., Seymour, P., Winkler, P.: The Ring Loading Problem. SIAM Review 41(4), 777–791 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xiaotie Deng
    • 1
  • Guojun Li
    • 2
    • 3
  1. 1.City University of Hong KongHong Kong SARP. R. China
  2. 2.Institute of SoftwareChinese academy of SciencesBeijingP. R. China
  3. 3.School of Mathematics and System SciencesShandong UniversityJinanP. R. China

Personalised recommendations