Advertisement

Online Scheduling of Equal-Length Jobs: Randomization and Restarts Help

  • Marek Chrobak
  • Wojciech Jawor
  • Jiří Sgall
  • Tomáš Tichý
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

The input of the studied scheduling problem is a set of jobs with equal processing times, where each job is specified by its release time and deadline. The goal is to determine a single-processor, non-preemptive schedule that maximizes the number of completed jobs. In the online version, each job arrives at its release time.

First, we give a barely random \(\frac{5}{3}\)-competitive algorithm that uses only one random bit; we also show a lower bound of \(\frac{3}{2}\) for barely random algorithms that choose one of two deterministic algorithms. Second, we give a deterministic \(\frac{3}{2}\)-competitive algorithm in the model that allows restarts, and we show that in this model the ratio \(\frac{3}{2}\) is optimal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: On randomized online scheduling. In: Proc. 34th Symp. Theory of Computing (STOC), pp. 134–143. ACM, New York (2002)Google Scholar
  2. 2.
    Baptiste, P.: Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times. J. of Scheduling 2, 245–252 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bartal, Y., Chrobak, M., Larmore, L.L.: A randomized algorithm for two servers on the line. Information and Computation 158, 53–69 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carlier, J.: Problèmes d’ordonnancement à durées égales. QUESTIO 5(4), 219–228 (1981)Google Scholar
  5. 5.
    Chrobak, M., Dürr, C., Jawor, W., Kowalik, Ł., Kurowski, M.: A note on scheduling equal-length jobs to maximize throughput (2004) (manuscript)Google Scholar
  6. 6.
    Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized on-line scheduling for two related machines. J. of Scheduling 4, 71–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garey, M., Johnson, D., Simons, B., Tarjan, R.: Scheduling unit-time tasks with arbitrary release times and deadlines. SIAM J. on Computing 10(2), 256–269 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldman, S.A., Parwatikar, J., Suri, S.: Online scheduling with hard deadlines. J. of Algorithms 34, 370–389 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldwasser, M.H.: Patience is a virtue: The effect of slack on the competitiveness for admission control. J. of Scheduling 6, 183–211 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goldwasser, M.H., Kerbikov, B.: Admission control with immediate notification. J. of Scheduling 6, 269–285 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hoogeveen, H., Potts, C.N., Woeginger, G.J.: On-line scheduling on a single machine: Maximizing the number of early jobs. Operations Research Letters 27, 193–196 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. 5th Symp. on Discrete Algorithms (SODA), pp. 302–311. ACM/SIAM (1994)Google Scholar
  13. 13.
    Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for the list update problem. Algorithmica 11, 15–32 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Seiden, S.: Barely random algorithms for multiprocessor scheduling. J. of Scheduling 6, 309–334 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Simons, B.: A fast algorithm for single processor scheduling. In: Proc. 19th Symp. on Foundations of Computer Science (FOCS), pp. 246–252. IEEE, Los Alamitos (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marek Chrobak
    • 1
  • Wojciech Jawor
    • 1
  • Jiří Sgall
    • 2
  • Tomáš Tichý
    • 2
  1. 1.Department of Computer ScienceUniversity of CaliforniaRiversideUSA
  2. 2.Mathematical InstituteAS CRPraha 1Czech Republic

Personalised recommendations