Coordination Mechanisms

  • George Christodoulou
  • Elias Koutsoupias
  • Akash Nanavati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)


We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and non-colluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worst-case performance of a Nash equilibrium over the (centrally controlled) social optimum. We give upper and lower bounds for the price of anarchy for selfish task allocation and congestion games.


Cost Function Nash Equilibrium Social Cost Schedule Policy Competitive Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, A., Tardos, E.: Frugal Path Mechanisms. In: ACM-SIAM SODA (2002)Google Scholar
  2. 2.
    Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing. In: ACM EC, pp. 98–107 (2003)Google Scholar
  3. 3.
    Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: ACM STOC, pp. 521–530 (2003)Google Scholar
  4. 4.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9(1), 91–103 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-case Equilibria. In: ACM-SIAM SODA, pp. 413–420 (2002)Google Scholar
  6. 6.
    Fabrikant, A., Papadimitriou, C., Tulwar, K.: On the complexity of pure equilibria,
  7. 7.
    Gonzalez, T., Ibarra, O., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM J. Comput. 6(1), 155–166 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)Google Scholar
  9. 9.
    Korilis, Y., Lazar, A., Orda, A.: Architecting Noncooperative Networks. IEEE Journal on Selected Areas in Communications 13(7), 1241–1251 (1995)CrossRefGoogle Scholar
  10. 10.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity, SIROCCO (2002)Google Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and Economic Behavior 13, 111–124 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Monderer, D., Shapley, L.S.: Potential Games. Games and and Economic Behavior 14, 124–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Monderer, D., Tennenholtz, M.: k-Implementation. In: ACM EC, pp. 19–28 (2003)Google Scholar
  15. 15.
    Nisan, N.: Algorithms for selfish agents: Mechanism design for distributed computation. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 1–15. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  18. 18.
    Papadimitriou, C.H.: Algorithms, games, and the Internet. In: ACM STOC, pp. 749–753 (2001)Google Scholar
  19. 19.
    Ronen, A.: Algorithms for rational agents. In: Conference on Current Trends in Theory and Practice of Informatics, pp. 56–70 (2000)Google Scholar
  20. 20.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Roughgarden, T.: Designing networks for selfish users is hard. In: IEEE FOCS, pp. 472–481 (2001)Google Scholar
  22. 22.
    Roughgarden, T.: The price of anarchy is independent of the network topology. In: ACM STOC, pp. 428-437 (2002)Google Scholar
  23. 23.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • George Christodoulou
    • 1
  • Elias Koutsoupias
    • 1
  • Akash Nanavati
    • 2
  1. 1.Department of InformaticsUniversity of AthensAthensGreece
  2. 2.Computer Science DepartmentUniversity of California Los AngelesLos AngelesUSA.

Personalised recommendations