Model Checking with Multi-valued Logics

  • Glenn Bruns
  • Patrice Godefroid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)


In multi-valued model checking, a temporal logic formula is interpreted relative to a structure not as a truth value but as a lattice element. In this paper we present new algorithms for multi-valued model checking. We first show how to reduce multi-valued model checking with any distributive DeMorgan lattice to standard, two-valued model checking. We then present a direct, automata-theoretic algorithm for multi-valued model checking with logics as expressive as the modal mu-calculus. As part of showing correctness of the algorithm, we present a new fundamental result about extended alternating automata, a generalization of standard alternating automata.


Model Check Distributive Lattice Temporal Logic Atomic Proposition Lattice Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolc, L., Borowik, P.: Many-Valued Logics. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  2. 2.
    Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning about Partial State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 168. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bruns, G., Godefroid, P.: Temporal Logic Query Checking. In: Proc. of LICS 2001, pp. 409–417. IEEE, Los Alamitos (2001)Google Scholar
  4. 4.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Bruns, G., Godefroid, P.: Model checking with multi-valued logics. Technical Report BL03.00018, Bell Labs, Lucent Technologies (May 2003)Google Scholar
  6. 6.
    Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic model checking. Tech. Report 448, Comp. Sys. Res. Group, Univ. of Toronto (2001)Google Scholar
  8. 8.
    Chechik, M., Easterbrook, W.: A framework for multi-valued reasoning over inconsistent viewpoints. In: Proc. of ICSE 2001 (2001)Google Scholar
  9. 9.
    Chechik, M., Easterbrook, W., Gurfinkel, A.: Model exploration with temporal logic query checking. In: Proc. of FSE 2002, ACM, New York (2002)Google Scholar
  10. 10.
    Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with fine-grained abstractions using SPIN. In: Proc. of SPIN Workshop on Model-Checking Software (2001)Google Scholar
  11. 11.
    Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  12. 12.
    Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer Science, pp. 995–1072. Elsevier, Amsterdam (1990)Google Scholar
  13. 13.
    Fitting, M.: Many-valued modal logics I. Fund. Informaticae 15, 235–254 (1992)MathSciNetGoogle Scholar
  14. 14.
    Fitting, M.: Many-valued modal logics II. Fund. Informaticae 17, 55–73 (1992)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fecht, C., Seidl, H.: A Faster Solver for General Systems of Equations. Sci. Comp. Programming 35(2), 137–161 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Godefroid, P., Jagadeesan, R.: On the Expressiveness of 3-Valued Models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical model checking. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 266–280. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Huth, M., Pradhan, S.: Lifting assertion and consistency checkers from single to multiple viewpoints. Technical report 2002/11, Dept. of Computing, Imperial College, London (2002)Google Scholar
  19. 19.
    Konikowska, B., Penczek, W.: Reducing model checking from multi-valued CTL* to CTL*. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 226. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Kozen, D.: Results on the Propositional Mu-Calculus. Theoretical Computer Science 27, 333–354 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Branching-Time Model Checking. JACM 47(2), 312–360 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stirling, C.: Modal and temporal logics for processes. Notes for Summer School in Logic Methods in Concurrency, C.S. Dept., Åarhus University, Denmark (1993)Google Scholar
  23. 23.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Maths 5, 285–309 (1955)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Glenn Bruns
    • 1
  • Patrice Godefroid
    • 1
  1. 1.Bell LaboratoriesLucent Technologies 

Personalised recommendations