Skip to main content

An Analog Characterization of Elementarily Computable Functions over the Real Numbers

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We present an analog and machine-independent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. Concerning recursive analysis, our results provide machine-independent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higher-order (type 2) Turing machines. Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1978)

    Google Scholar 

  2. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In: Logic in computer science, pp. 269–278 (2001)

    Google Scholar 

  3. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. Journal of Computer and System Sciences 57(3), 389–398 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  5. Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoretical Computer Science 210(1), 21–71 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bournez, O.: Complexité algorithmique des systèmes dynamiques continus et hybrides. PhD thesis, École Normale Supérieure de Lyon (Janvier 1999)

    Google Scholar 

  7. Bowles, M.: United States technological enthusiasm and the british technological skepticism in the age of the analog brain. In: IEEE Annals of the History of Computing, vol. 4, pp. 5–15 (1996)

    Google Scholar 

  8. Campagnolo, M., Moore, C., Costa, J.F.: An analog characterization of the Grzegorczyk hierarchy. Journal of Complexity 18(4), 977–1000 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Campagnolo, M.L.: Computational complexity of real valued recursive functions and analog circuits. PhD thesis, Universidade Técnica de Lisboa (2001)

    Google Scholar 

  10. Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth spacetimes. International Journal Theoretical Physics 41, 341–370 (2002)

    Article  MATH  Google Scholar 

  11. Graça, D., Costa, J.F.: Analog computers and recursive functions over the reals. Journal of Complexity 19, 644–664 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)

    MATH  MathSciNet  Google Scholar 

  13. Henzinger, T., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)

    Google Scholar 

  14. Hogarth, M.L.: Does general relativity allow an observer to view an eternity in a finite time? Foundations of physics letters 5, 173–181 (1992)

    Article  MathSciNet  Google Scholar 

  15. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III. Comptes rendus de l’Académie des Sciences Paris 241, 151–153 (1955)

    Google Scholar 

  16. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and analog computability. Proceedings of the American Mathematical Society 99(2), 367–372 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mycka, J.: Infinite limits and R-recursive functions. Acta Cybernetica 16, 83–91 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Mycka, J.: μ-recursion and infinite limits. Theoretical Computer Science 302, 123–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Odifreddi, P.: Classical recursion theory II. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  21. Ord, T.: Hypercomputation: computing more than the Turing machine. Technical report, University of Melbourne, september (2002), available at http://www.arxiv.org/abs/math.lo/0209332

  22. Orponen, P.: Algorithms, languages and complexity, chapter A survey of continuoustime computational theory, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  23. Pour-El, M.B.: Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society 199, 1–28 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rose, H.: Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  25. Shannon, C.E.: Mathematical theory of the differential analyser. Journal of Mathematics and Physics MIT 20, 337–354 (1941)

    MATH  MathSciNet  Google Scholar 

  26. Siegelmann, H.: Neural networks and analog computation - beyond the Turing limit. Birkauser (1998)

    Google Scholar 

  27. Thomson, W.: On an instrument for calculating the integral of the product of two given functions. Proceedings of the royal society of London (24), 266–276 (1876)

    Article  Google Scholar 

  28. Turing, A.: On computable numbers, with an application to the “Entschei–dungs– problem”. Proceedings of the london mathematical society 2, 230–265 (1936)

    Google Scholar 

  29. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  30. Zhou, Q.: Subclasses of computable real valued functions. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 156–165. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournez, O., Hainry, E. (2004). An Analog Characterization of Elementarily Computable Functions over the Real Numbers. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics