Advertisement

An Analog Characterization of Elementarily Computable Functions over the Real Numbers

  • Olivier Bournez
  • Emmanuel Hainry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

We present an analog and machine-independent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. Concerning recursive analysis, our results provide machine-independent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higher-order (type 2) Turing machines. Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1978)Google Scholar
  2. 2.
    Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In: Logic in computer science, pp. 269–278 (2001)Google Scholar
  3. 3.
    Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. Journal of Computer and System Sciences 57(3), 389–398 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoretical Computer Science 210(1), 21–71 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bournez, O.: Complexité algorithmique des systèmes dynamiques continus et hybrides. PhD thesis, École Normale Supérieure de Lyon (Janvier 1999)Google Scholar
  7. 7.
    Bowles, M.: United States technological enthusiasm and the british technological skepticism in the age of the analog brain. In: IEEE Annals of the History of Computing, vol. 4, pp. 5–15 (1996)Google Scholar
  8. 8.
    Campagnolo, M., Moore, C., Costa, J.F.: An analog characterization of the Grzegorczyk hierarchy. Journal of Complexity 18(4), 977–1000 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Campagnolo, M.L.: Computational complexity of real valued recursive functions and analog circuits. PhD thesis, Universidade Técnica de Lisboa (2001)Google Scholar
  10. 10.
    Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth spacetimes. International Journal Theoretical Physics 41, 341–370 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Graça, D., Costa, J.F.: Analog computers and recursive functions over the reals. Journal of Complexity 19, 644–664 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Henzinger, T., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Hogarth, M.L.: Does general relativity allow an observer to view an eternity in a finite time? Foundations of physics letters 5, 173–181 (1992)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III. Comptes rendus de l’Académie des Sciences Paris 241, 151–153 (1955)Google Scholar
  16. 16.
    Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and analog computability. Proceedings of the American Mathematical Society 99(2), 367–372 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mycka, J.: Infinite limits and R-recursive functions. Acta Cybernetica 16, 83–91 (2003)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Mycka, J.: μ-recursion and infinite limits. Theoretical Computer Science 302, 123–133 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Odifreddi, P.: Classical recursion theory II. North-Holland, Amsterdam (1999)zbMATHGoogle Scholar
  21. 21.
    Ord, T.: Hypercomputation: computing more than the Turing machine. Technical report, University of Melbourne, september (2002), available at http://www.arxiv.org/abs/math.lo/0209332
  22. 22.
    Orponen, P.: Algorithms, languages and complexity, chapter A survey of continuoustime computational theory, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  23. 23.
    Pour-El, M.B.: Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society 199, 1–28 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Rose, H.: Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford (1984)zbMATHGoogle Scholar
  25. 25.
    Shannon, C.E.: Mathematical theory of the differential analyser. Journal of Mathematics and Physics MIT 20, 337–354 (1941)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Siegelmann, H.: Neural networks and analog computation - beyond the Turing limit. Birkauser (1998)Google Scholar
  27. 27.
    Thomson, W.: On an instrument for calculating the integral of the product of two given functions. Proceedings of the royal society of London (24), 266–276 (1876)CrossRefGoogle Scholar
  28. 28.
    Turing, A.: On computable numbers, with an application to the “Entschei–dungs– problem”. Proceedings of the london mathematical society 2, 230–265 (1936)Google Scholar
  29. 29.
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  30. 30.
    Zhou, Q.: Subclasses of computable real valued functions. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 156–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Emmanuel Hainry
    • 1
  1. 1.LORIA/INRIAVillers lès NancyFrance

Personalised recommendations