Further Improvements in Competitive Guarantees for QoS Buffering

  • Nikhil Bansal
  • Lisa K Fleischer
  • Tracy Kimbrel
  • Mohammad Mahdian
  • Baruch Schieber
  • Maxim Sviridenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)


We study the behavior of algorithms for buffering packets weighted by different levels of Quality of Service (QoS) guarantees in a single queue. Buffer space is limited, and packet loss occurs when the buffer overflows. We describe a modification of the previously proposed “preemptive greedy” algorithm of for buffer management and give an analysis to show that this algorithm achieves a competitive ratio of at most 1.75. This improves upon recent work showing a 1.98 competitive ratio, and a previous result that shows a simple greedy algorithm has a competitive ratio of 2.


Time Slot Competitive Ratio Basic Feasible Solution FIFO Queue Internet Draft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, W., Ostrovsky, R., Kushilevitz, E., Rosen, A.: Dynamic routing on networks with fixed size buffers. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 771–780 (2003)Google Scholar
  2. 2.
    Aiello, W., Mansour, Y., Rajagopolan, S., Rosen, A.: Competitive queue policies for differentiated services. In: Proceedings of the IEEE INFOCOM, pp. 431–440 (2000)Google Scholar
  3. 3.
    Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffering. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (2004)Google Scholar
  4. 4.
    Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS switches. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pp. 761–770 (2003)Google Scholar
  5. 5.
    Andrews, Awerbuch, Fernandez, Kleinberg, Leighton, Liu.: Universal stability results for greedy contention-resolution protocols. In: 37th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 380–389 (1996)Google Scholar
  6. 6.
    Azar, Y., Richter, Y.: Management of multi-queue switches in QoS netowrks. In: 35th ACM Symposium on Theory of Computing, pp. 82–89 (2003)Google Scholar
  7. 7.
    Azar, Y., Richter, Y.: The zero-one principle for switching networks. In: Proc. 34th ACM Symposium on Theory of Computing (2004)Google Scholar
  8. 8.
    Bar-Noy, A., Freund, A., Landa, S., (Seffi) Naor, J.:Competitive on-line switching policies. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (2002)Google Scholar
  9. 9.
    Bernet, Y., Smith, A., Blake, S., Grossman, D.: A conceptual model for diffserv routers. Internet draft (March 2000)Google Scholar
  10. 10.
    Birman, A., Richard Gail, H., Hantler, S.L., Rosberg, Z., Sidi, M.: An optimal service policy for buffer systems. Journal of the ACM 42(3), 641–657 (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. Journal of the ACM 48(1), 13–38 (2001)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Clark, D., Wroclawski, J.: An approach to service allocation in the Internet. Internet draft (July 1997)Google Scholar
  13. 13.
    Dovrolis, C., Stiliadis, D., Ramanathan, P.: Proportional differentiated services: Delay differentiation and packet scheduling. In: SIGCOMM, pp. 109–120 (1999)Google Scholar
  14. 14.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problem. In: Proceedings of the 34st Annual ACM Symposium on Theory of Computing (2002)Google Scholar
  15. 15.
    Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive guarantees for QoS buffering. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 361–372. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko, M.: Buffer overflow management in QoS switches. In: ACM Symposium on Theory of Computing, pp. 520–529 (2001)Google Scholar
  17. 17.
    Koga, H.: Balanced scheudling towards loss-free packet queueing and delay fairness. In: Proc. 12th Annual International Symposium on Algorithms and Computation, pp. 61–73 (2001)Google Scholar
  18. 18.
    Lotker, Z., Patt-Shamir, B.: Nearly optimal fifo buffer management for Diff- Serv. In: Proc. 21st ACM-SIAM Symposium on Principles of Distributed Computing (PODC), pp. 134–142 (2002)Google Scholar
  19. 19.
    Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for realtime streams. In: Proc. 19th ACM Symp. on Principles of Distributed Computing, pp. 21–29 (2000)Google Scholar
  20. 20.
    May, M., Bolot, J.-C., Jean-Marie, A., Diot, C.: Simple performance models of differentiated services schemes for the internet. In: Proc. IEEE INFOCOM, pp. 1385–1394 (1999)Google Scholar
  21. 21.
    Nandagopal, T., Venkitaraman, N., Sivakumar, R., Bharghavan, V.: Delay differentiation and adaptation in core stateless networks. In: Proc. IEEE INFOCOM (2000)Google Scholar
  22. 22.
    Nichols, K., Jacobson, V., Zhang, L.: A twobit differentiated services architecture for the internet. Internet draft (1997)Google Scholar
  23. 23.
    Semret, N., Liao, R.R.-F., Campbell, A.T., Lazar, A.A.: Peering and provisioning of differentiated internet services. In: Proc. IEEE INFOCOM, pp. 414–420 (2000)Google Scholar
  24. 24.
    Stoica, I., Zhang, H.: Providing guaranteed services without per flow management. In: Proc. ACM SIGCOMM, pp. 81–94 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Nikhil Bansal
    • 1
  • Lisa K Fleischer
    • 1
  • Tracy Kimbrel
    • 1
  • Mohammad Mahdian
    • 2
  • Baruch Schieber
    • 1
  • Maxim Sviridenko
    • 1
  1. 1.IBM Watson Research CenterYorktown HeightsUSA
  2. 2.Department of MathematicsMITCambridgeUSA

Personalised recommendations