Advertisement

Optimal Reachability for Weighted Timed Games

  • Rajeev Alur
  • Mikhail Bernadsky
  • P. Madhusudan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

Weighted timed automata are timed automata annotated with costs on locations and transitions. The optimal game-reachability problem for these automata is to find the best-cost strategy of supplying the inputs so as to ensure reachability of a target set within a specified number of iterations. The only known complexity bound for this problem is a doubly-exponential upper bound. We establish a singly-exponential upper bound and show that there exist automata with exponentially many states in a single region with pair-wise distinct optimal strategies.

Keywords

Base Cell Diagonal Line Optimal Cost Discrete Transition Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A.: Computing accumulated delays in real-time systems. Formal Methods in System Design 11(2), 137–155 (1997)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Behrman, G., Hune, T., Fehnker, A., Larsen, K., Petersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 399–409. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Ferrante, J., Rackoff, C.: A decision procedure for the first order theory on real addition with order. SIAM Journal of Computing 4(1), 69–76 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arithmetic. In: Proc. of SIAM-AMS Symp. in Appl. Math., vol. 7, pp. 27–41 (1974)Google Scholar
  11. 11.
    Larsen, K., Behrman, G., Brinksma, E., Fehnker, A., Hune, T., Petersson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    La Torre, S., Mukhopadhyay, S., Murano, A.: Optimal-reachability and control for acyclic weighted timed automata. In: Proceedings of the 17th IFIP World Computer Congress: TCS, pp. 485–497. Kluwer, Dordrecht (2002)Google Scholar
  15. 15.
    Wong-Toi, H., Hoffmann, G.: The control of dense real-time discrete event systems. In: IEEE Conference on Decision and Control, pp. 1527–1528 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rajeev Alur
    • 1
  • Mikhail Bernadsky
    • 1
  • P. Madhusudan
    • 1
  1. 1.University of Pennsylvania 

Personalised recommendations