Advertisement

Linear and Branching Metrics for Quantitative Transition Systems

  • Luca de Alfaro
  • Marco Faella
  • Mariëlle Stoelinga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

We extend the basic system relations of trace inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as real values in the interval [0,1]. Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of Ltl and μ-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear and branching distances do not coincide for deterministic quantitative transition systems. Finally, we provide algorithms for computing the distances, together with matching lower and upper complexity bounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caspi, P., Benveniste, A.: Toward an approximation theory for computerized control. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 294–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: Proceedings STOC, pp. 675–683. ACM Press, New York (2001)Google Scholar
  4. 4.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press, London (1970)zbMATHGoogle Scholar
  5. 5.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  7. 7.
    Fletcher, P., Lindgren, W.F.: Quasi-uniform spaces. Lecture Notes in Pure and Applied Mathematics, vol. 77. Marcel Dekker Inc., New York (1982)zbMATHGoogle Scholar
  8. 8.
    Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proceedings of LICS, pp. 111–122 (1997)Google Scholar
  9. 9.
    Kozen, D.: A probabilistic PDL. In: Proc. 15th ACM Symp. Theory of Comp., pp. 291–297 (1983)Google Scholar
  10. 10.
    Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design: An International Journal 6(1), 11–44 (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    Majumdar, R.: Symbolic algorithms for verification and control. PhD thesis, University of California, Berkeley (2003)Google Scholar
  12. 12.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  13. 13.
    McIver, A., Morgan, C.: Games, probability, and the quantitative μ-calculus qMμ. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 292–310. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Reif, J.H.: Universal games of incomplete information. In: 11th Annual ACM Symposium on Theory of Computing, April, Atlanta, Georgia, pp. 288–308 (1979)Google Scholar
  15. 15.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. 5th ACM Symp. Theory of Comp., pp. 1–9. ACM Press, New York (1973)Google Scholar
  16. 16.
    van Breugel, F., Worrel, J.: An algorithm for quantitative verification of probabilistic transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 336–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Luca de Alfaro
    • 1
  • Marco Faella
    • 1
  • Mariëlle Stoelinga
    • 1
  1. 1.Department of Computer EngineeringUniversitity of CaliforniaSanta CruzUSA

Personalised recommendations