Skip to main content

Towards Cortex Sized Attractor ANN

  • Conference paper
  • 810 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3141))

Abstract

We review the structure of cerebral cortex to find out the number of neurons and synapses and its modular structure. The organization of these neurons is then studied and mapped onto the framework of an artificial neural network (ANN). The computational requirements to run this ANN model are then estimated. The conclusion is that it is possible to simulate the mouse cortex today on a cluster computer but not in real-time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lansner, A., Fransén, E., Sandberg, A.: Cell assembly dynamics in detailed and abstract attractor models of cortical associative memory. Theory in Biosciences 122, 19–36 (2003)

    Google Scholar 

  2. Palm, G.: Neural Assemblies: An Alternative Approach to Artificial Intelligence. Studies of Brain Function, ed. V. Braitenberg, vol. 7. Springer, Heidelberg (1982)

    Google Scholar 

  3. Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University Press, New York (1998)

    Google Scholar 

  4. Cossart, R., Aronov, D., Yuste, R.: Attractor dynamics of network UP states in the neocortex. Nature 423(6937), 283–288 (2003)

    Article  Google Scholar 

  5. Shu, Y., Hasenstaub, A., Mccormick, D.A.: Turning on and off recurrent balanced cortical activity. Nature 423(6937), 288–293 (2003)

    Article  Google Scholar 

  6. Rockel, A.J., Hiorns, R.W., Powell, T.P.S.: The Basic Uniformity in Structure of the Neocortex. Brain 103, 221–244 (1980)

    Article  Google Scholar 

  7. Buxhoeveden, D.P., Casanova, M.F.: The minicolumn hypothesis in neuroscience. Brain 125, 935–951 (2002)

    Article  Google Scholar 

  8. Braitenberg, V., Schuz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, New York (1998)

    Google Scholar 

  9. Hofman, M.A.: Size and Shape of the Cerebral Cortex in Mammals. I. The cortical surface. Brain Behav. Evol. 27, 28–40 (1985)

    Article  Google Scholar 

  10. Nieuwenhuys, R., Donkelaar, H.J.t., Nicholson, C.: The Central Nervous System of Vertebrates, vol. 3. Springer, Heidelberg (1997)

    Google Scholar 

  11. Beaulieu, C., et al.: Quantitative distribution of GABA-immunopositive and - immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex 2, 295–309 (1992)

    Article  Google Scholar 

  12. Beaulieu, C., Colonnier, M.: Number and size of neurons and synapses in the motor cortex of cats raised in different environmental complexities. The Journal of Comparative Neurology 289, 178–187 (1989)

    Article  Google Scholar 

  13. Pakkenberg, B., et al.: Aging and the human neocortex. Experimental Gerontology 38, 95–99 (2003)

    Article  Google Scholar 

  14. Koch, C., Biophysics of Computation: Information Processing in Single Neurons, ed. M. Stryker. Oxford University Press, New York (1999)

    Google Scholar 

  15. Bair, W., Koch, C.: Temporal precision of spike trains in extrastriate cortex. Neural Computation 8, 1185–1202 (1996)

    Article  Google Scholar 

  16. Shepherd, G.M., Koch, C.: The Synaptic Organization of the Brain, ed. G.M. Shepherd. Oxford University Press, Oxford (1998)

    Google Scholar 

  17. Lund, J.S., Angelucci, A., Bressloff, P.C.: Anatomical Substrates for Functional Columns in Macaque Monkey Primary Visual Cortex. Cerebral Cortex 12, 15–24 (2003)

    Article  Google Scholar 

  18. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  19. Mountcastle, V.B.: Modality and Topographic Properties of Single Neurons of Cat’s Somatic Sensory Cortex. Journal of neurophysiology 20, 408–434 (1957)

    Google Scholar 

  20. Hubel, D.H., Wiesel, T.N.: Shape and Arrangement of Columns in Cat’s Striate Cortex. Journal of Physiology 165, 559–568 (1963)

    Google Scholar 

  21. Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B. 198, 1–59 (1977)

    Article  Google Scholar 

  22. Buxhoeveden, D., et al.: Quantitative analysis of cell columns in the cerebral cortex. Journal of neuroscience methods 97, 7–17 (2000)

    Article  Google Scholar 

  23. Kisvarday, Z., et al.: Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cerebral Cortex 7(7), 605–618 (1997)

    Article  Google Scholar 

  24. Calvin, W.H.: Cortical Columns, Modules, and Hebbian Cell Assemblies. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 269–272. Bradford Books / MIT Press (1995)

    Google Scholar 

  25. Changeux, J.-P.: Neuronal Man: The Biology of Mind. Oxford University Press, Oxford (1985)

    Google Scholar 

  26. Leise, E.M.: Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates. Brain Research Reviews 15, 1–23 (1990)

    Article  Google Scholar 

  27. Rakic, P.: A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends in Neurosciences 18(9), 383–388 (1995)

    Article  Google Scholar 

  28. Mountcastle, V.B.: Introduction. Cerebral Cortex 13, 2–4 (2003)

    Article  Google Scholar 

  29. Silberberg, G., Gupta, A., Markram, H.: Stereotypy in neocortical microcircuits. Trends in Neurosciences 25(5), 227–230 (2002)

    Article  Google Scholar 

  30. Chenn, A., Walsh, C.A.: Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors. Science 297(5580), 365–369 (2002)

    Article  Google Scholar 

  31. Cürüklü, B., Lansner, A.: An Abstract Model of a Cortical Hypercolumn. In: Proc. of the 9th International Conference on Neural Information Processing, Singapore (2002)

    Google Scholar 

  32. Pakkenberg, B., Gundersen, H.J.G.: Neocortical Neuron Number in Humans: Effect of Sex and Age. The Journal of Comparative Neurology 384, 312–320 (1997)

    Article  Google Scholar 

  33. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative memory. Nature 222, 960–962 (1969)

    Article  Google Scholar 

  34. Palm, G.: On Associative Memory. Biological Cybernetics 36, 19–31 (1980)

    Article  MATH  Google Scholar 

  35. Sandberg, A., et al.: A Bayesian attractor network with incremental learning. Network: Computation in Neural Systems 13(2), 179–194 (2002)

    MATH  MathSciNet  Google Scholar 

  36. Sandberg, A., Lansner, A., Petersson, K.-M.: Selective Enhancement of Recall through Plasticity Modulation in an Autoassociative Memory. Neurocomputing 38-40, 867–873 (2001)

    Article  Google Scholar 

  37. Kanter, I.: Potts-glass models of neural networks. Phys. Rev. A 37(7), 2739–2742 (1988)

    Article  MathSciNet  Google Scholar 

  38. Bolle, D., Dupont, P., Mourik, J.v.: Stability properties of Potts neural networks with biased patterns and low loading. Journal of Physics A 24, 1065–1081 (1991)

    Article  MATH  Google Scholar 

  39. Shim, G.M., Kim, D., Choi, M.Y.: Potts-glass model of layered feedforward neural networks. Physical Review A 45(2), 1238–1248 (1992)

    Article  MathSciNet  Google Scholar 

  40. Kartashov, A., et al.: Quality and efficiency of retrieval for Willshaw-like autoassociative networks: III. Willshaw-Potts model. Network: Computation in Neural Systems 8, 71–86 (1997)

    Article  MATH  Google Scholar 

  41. Hammerstrom, D.: The Connectivity Requirements of Simple Association, or How Many Connections Do You Need? In: Proc. of the IEEE Conference on Neural Network Information Processing (1987)

    Google Scholar 

  42. Deiss, S.R., Douglas, R.J., Whatley, A.M.: A Pulse-Coded Communication Infrastructure for Neuromorphic Systems. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 157–178. MIT Press, Cambridge (1999)

    Google Scholar 

  43. Mattia, M., Giudice, P.D.: Efficient Event-Driven Simulation of Large Networks of Spiking Neurons and Dynamical Synapses. Neural Computation 12, 2305–2329 (2000)

    Article  Google Scholar 

  44. Bailey, J., Hammerstrom, D.: Why VLSI Implementations of Associative VLCNs Require Connection Multiplexing. In: Proc. of International Conference on Neural Networks, San Diego (1988)

    Google Scholar 

  45. Delorme, A., et al.: SpikeNet: S Simulator for Modeling Large Networks of Integrate and Fire Neurons. Neurocomputing 26-27, 989–996 (1999)

    Article  Google Scholar 

  46. Graßmann, C., Anlauf, J.K.: Fast Digital Simulation Of Spiking Neural Networks And Neuromorphic Integration With Spikelab. International Journal of Neural Systems 9(5), 473–478 (1999)

    Article  Google Scholar 

  47. Johansson, C., Lansner, A.: Mapping of the BCPNN onto Cluster Computers, TRITA-NA-P0305, Nada, KTH: Stockholm (2003)

    Google Scholar 

  48. Braitenberg, V.: Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy. Journal of Computational Neuroscience 10, 71–77 (2001)

    Article  Google Scholar 

  49. Indiveri, G., et al.: A Competitive Network of Spiking VLSI Neurons. In: Proc. of the World Congress on Neuroinformatics, Vienna (2001)

    Google Scholar 

  50. Viredaz, M.A., Ienne, P.: MANTRA I: A Systolic Neuro-Computer. In: Proc. of the International Joint Conference on Neural Networks (IJCNN), Nagoya, Japan (1993)

    Google Scholar 

  51. Hammerstrom, D.: Computational Neurobiology Meets Semiconductor Engineering. In: Invited Paper Multi-Valued Logic Conference, Portland, Oregon (2000)

    Google Scholar 

  52. Haug, H.: Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparision with some mammals (primates, whales, marsupials, insectivores, and one elephant). American Journal of Anatomy 180, 126–142 (1987)

    Article  Google Scholar 

  53. Dombrowski, S., Hilgetag, C., Barbas, H.: Quantitative Architecture Distinguishes Prefrontal Cortical Systems in the Rhesus Monkey. Cerebral Cortex 11(10), 975–988 (2001)

    Article  Google Scholar 

  54. Mouton, P.R., Price, D.L., Walker, L.C.: Empirical assessment of synapse numbers in primate neocortex. Journal of neuroscience methods 75(2), 119–126 (1997)

    Article  Google Scholar 

  55. Mayhew, T.M., Mwamengele, G.L.M., Dantzer, V.: Comparative morphometry of the mammalian brain: estimates of cerebral volumes and cortical surface areas obtained from macroscopic slices. Journal of Anatomy 172, 191–200 (1990)

    Google Scholar 

  56. Skoglund, T.S., Pascher, R., Berthold, C.H.: Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neuroscience Letters 208, 97–100 (1996)

    Article  Google Scholar 

  57. Sultan, F.: Analysis of mammalian brain architecture. Nature 415, 133–134 (2002)

    Article  Google Scholar 

  58. Williams, R.W.: Mouse Brain Development, ed. A.M. Goffinet and P. Rakic. Springer, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johansson, C., Lansner, A. (2004). Towards Cortex Sized Attractor ANN. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2004. Lecture Notes in Computer Science, vol 3141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27835-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23339-8

  • Online ISBN: 978-3-540-27835-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics