Skip to main content

The Blob Division

A “Hardware-Free”, Time Efficient, Self-Reproduction on 2D Cellular Automaton

  • Conference paper
Biologically Inspired Approaches to Advanced Information Technology (BioADIT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3141))

  • 804 Accesses

Abstract

This work is part of the Blob computing project whose goal is to develop a new model of parallel machine including a new model of computation and a new machine. The whole project idea is to try to capture basic principles of bio-computing system allowing massive parallelism. The model of computation is based on the concept of self-developing network of compute nodes, the machine is a 2-D cellular automaton grid whose evolution rule is fixed and implemented by simplified physical laws. A machine configuration represents idealized physical objects such as membrane or particle gas. A central object called blob is the harware image of a compute node. Based on published formal proof, this paper presents first an implementation of the blob object using the “programmable matter” platform of Cellular Automaton simulation. Then it describes an implementation of Blob division, the machine implementation of compute node duplication. We used five different kinds of cellular automaton rules, all explained in separate boxes. The result obtained can be classified as a new specific form of self-reproducing cellular automaton. Unlike past examples of self-reproduction, it happens in parallel, since the number of time steps necessary is proportional to \(\sqrt(p)\), where p measures the information (number of bits) contained in the object to duplicate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gruau, F., Lhuillier, Y., Reitz, P., Temam, O.: Blob computing. Sympo (2003), http://www.blob.lri.fr

  2. Gruau, F.: Automatic definition of modular neural networks. Adaptative Behavior 3(2), 151–183 (1995)

    Article  Google Scholar 

  3. Gruau, F., Ratajszczak, J.Y., Wiber, G.: A neural compiler. Theoretical Computer Science 141(1-2), 1–52 (1995)

    Article  MATH  Google Scholar 

  4. Gruau, F., Malbos, P.: The blob: A basic topological concept for hardware-free distributed computation. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, p. 151. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. DeHon, A.: The density advantage of configurable computing. Computer IEEE (2000)

    Google Scholar 

  6. Abelson, H., Allen, D., Coore, D., et Al.: Amorphous computing. MIT A.I. Lab (2000)

    Google Scholar 

  7. Banatre, J.P., Le Metayer, D.: Gamma and the chemical reaction model: Ten years after. Irisa/Inria Publication (1997)

    Google Scholar 

  8. Paun, G., Calude, C.S.: Membrane computing. In: Computing with Cells and Atoms, Taylor and Francis, London (2001), http://www.imar.ro/~gpaun/

    Google Scholar 

  9. Paun, G.: Computing with membranes. Institute of Maths. Romanian Academy (2000), http://www.imar.ro/~gpaun/

  10. Von Neumann, J.: Theory of Self-Reproducing Automata. Univ. of Illinois Press (1966)

    Google Scholar 

  11. Langton, C.: Self-reproduction in cellular automata. In: Cellular Automata, Univ. of Michigan (1984)

    Google Scholar 

  12. Tempesti, G.: A new self-reproducing cellular automaton capable of construction and computation. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, Springer, Heidelberg (1995)

    Google Scholar 

  13. Sherratt, J., Turner, S.: Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model. J. of Theor. Biol. (2002)

    Google Scholar 

  14. Toffoli, T., Margolus, N.: Cellular Automata Machines. MIT Press, Cambridge (1987)

    Google Scholar 

  15. Bach, T.: A simp tutorial. Boston University (2003)

    Google Scholar 

  16. Gruau, F., Tromp, J.: Cellular gravity. Parallel Processing Letter (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gruau, F., Moszkowski, G. (2004). The Blob Division. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2004. Lecture Notes in Computer Science, vol 3141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27835-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23339-8

  • Online ISBN: 978-3-540-27835-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics