Abstract
Humanoid robots are fascinating from two points of view, firstly their construction and secondly because they lend life to inanimate objects. The combination of biology and robots leads to smoother and compliant movement which is more pleasant for us as people. Biologically inspired robots embody non-rigid movement which are made possible by special joints or actuators which give way and can both actively and passively adapt stiffness in different situations. The following paper deals with the construction of a compliant embodiment of a humanoid robot arm, including a five-finger hand with artificial fluidic muscles. The biologically inspired decentralized control architecture allows small units to be responsible for each main movement task. The first section gives a short introduction as to how bionics engineers think and tries to motivate us to build compliant machines. The second section looks at mechanical aspects, limitations and constraints and furthermore describes a human-like robot arm and hand. Section 3 presents the fluidic muscle actuator of the company FESTO. The fourth section describes the decentralized control architecture and the electronic components. The last section concludes the paper while looking at further prospects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rechenberg, I.: Evolutionsstrategie 1994, p. 434. fromman-holzboog (1994)
Šurdiloviæ, D.T.: Synthesis of Robust Compliance Control Algorithms for Industrial Robots and Advanced Interaction Systems, in Mechanical Engineering Faculty. University in Niš, 475 (2002)
Okada, M., MNakamura, Y., Ban, S.: Design of Programmable Passive Compliance Shoulder Mechanism. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea (2001)
Ahmadi, M., Buehler, M.: Stable Control of a Simulated One-Legged Running Robot with Hip and Leg Compliance. In: Department of Mechanical Engineering, Centre For Intelligent Machines, p. 9. McGill University, Montral (1996)
Rocco, P., Ferretti, G., Magnani, G.: Implicite Force Control for Industrial Robots in Contact with Stiff Surfaces. Automatica 33(11), 2041–2047 (1997)
Fenn, W.O., Marsh, B.S.: Muscular force at different speeds of shortening. Journal of physiology 85(3), 277–298 (1935)
Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology 184, 170–192 (1966)
Carlson, F.D., Wilkie, D.R.: Muscle Physiology. Prentice-Hall, Englewood Cliffs (1974)
Huxley, A.F.: Muscular Contraction. Journal of Physiology 243, 1–43 (1974)
Gohlke, F.: Biomechanik der Schulter. Orthopäde, vol. 29, pp. 834–844. Springer-, Heidelberg (2000)
Jacobsen, S.C., et al.: The Utah/MIT dexterous hand:Work in progress. Int. J. Robot. Res. 3(4), 21–50 (1984)
Jacobsen, S.C., et al.: Design of the Utah/MIT Dextrous Hand. In: Proceedings IEEE Int. Conf. on Robotics and Automation, USA, pp. 1520–1532 (1986)
Fischer, T., Woern, H.: Structure of a robot system: Karlsruhe dextrous hand II. In: Proc. of Mediterranean Conf. on Control and Systems (1998)
Osswald, D., Wörn, H.: Mechanical System and Control System of a Dexterous Robot Hand. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, p. 8 (2001)
Salisbury, J.K.: Articulated Hands: Force Control and Kinematics Issues. Stanford University, Stanford (1982)
Salisbury, J.K.: Design and Control of an Articulated Hand. In: Int. Symposium on Design and Synthesis, Tokio (1984)
Rosheim, M.: Robot Evolution, pp. 216–224. Wiley, New York (1994)
Lin, L.R., Huang, H.P.: Integrating fuzzy control of the dexterous National Taiwan University (NTU) hand. IEEE/ASME Trans. Mechatron 1, 216–229 (1996)
Butterfass, J., et al.: DLR’s Multisensory Articulated Hand Part I: Hard- and Software Architecture. In: IEEE International Conference on Robotics and Automation, pp. 2081–2086 (1998)
Butterfass, J., et al.: DLR-Hand II: Next Generation of Dextrous Robot Hand. In: Proc. IEEE Conf. on Robotics and Automation, Seoul, Korea, pp. 109–114 (2001)
Dario, P., et al.: On the development of a cybernetic hand prosthesis
Bernieri, S., et al.: The DIST-Hand Robot. In: IROS 1997 Conf. Video Proceedings, Grenoble, France (1997)
Caffaz, A., Cannata, G.: The Design and Development of the DIST-Hand Dextrous Gripper. In: Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, pp. 2075–2080 (1998)
Caffaz, A., et al.: The DIST-Hand, an Anthropomorphic, Fully Sensorized Dexterous Gripper. In: IEEE Humanoids 2000, MIT, Boston (2000)
Kawasaki, H., Komatsu, T.: Mechanism design of anthropomorphic robot hand: Gifu hand I. J. Robot. Mechatron 11(4), 269–273 (1999)
Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II. IEEE/ASME Transactions on Mechatronics 7(3), 296–303 (2002)
Mouri, T., et al.: Anthropomorphic Robot Hand: Gifu Hand III. ICCA, Muju Resort, Jeonbuk, Korea, p. 6 (2002)
Lovchik, C.S., Diftler, M.A.: The robonaut hand: A dextrous robot hand for space. In: Proc. IEEE Conf. on Robotics and Automation, pp. 907–912 (1999)
Hirose, S., Ma, S.: Coupled tendon-driven multijoint manipulator. In: Proceedings of IEEE International Conference on Robotics & Automation, pp. 1268–1275 (1991)
Ishikawa, Y., et al.: Development of Robot Hands with an Adjustable Power Transmitting Mechanism. In: Intelligent Engineering Systems Through Neural Networks, vol. 10, pp. 631–636. ASME Press (2000)
Folgheraiter, M., et al.: Blackfingers a Sophisticated Hand Prothesis , p. 4
Folgheraiter, M., Gini, G.: Blackfingers an artificial hand that copies human hand in structure, size, and function. In: Proc. IEEE Humanoids 2000, p. 4. MIT, Cambridge (2000)
Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight anthropomorphic hand. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea, pp. 2437–2441 (2001)
Pylatiuk, C., Schulz, S.: Neuentwicklung einer Prothesenhand. Prothetik 8, 4 (2002)
Pylatiuk, C., Schulz, S.: Entwicklung flexibler Fluidaktoren und ihre Anwendung in der Medizintechnik. Med. Orth. Tech. 120, 186–189 (2000)
Design of a Dextrous Hand for advanced CLAWAR applications, Shadow Robot Company: 251 Liverpool Road London ENGLAND (2003)
Schulte, H.F.J.: The characteristics of the McKibben artificial muscle. In: The application of external power in prosthetics and orthotics, National Academy of Science-National Research Council, Washington D.C. (1961)
Chou, C.-P., Hannaford, B.: Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles . IEEE (1994) ;Department of Electrical Engineering , FT-10, University of Washington: Seattle, Washington 98195, pp. 281-286
Colbrunn, R.W.: Master of Science, in Department of Mechanical and Aerospace Engineering, Case Western Reserve University, p. 141 (2000)
Tsagarakis, N., Caldwell, D.G.: Improved Modelling and Assessment of pneumatic Muscle Actuator. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 3641–3646 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Boblan, I., Bannasch, R., Schwenk, H., Prietzel, F., Miertsch, L., Schulz, A. (2004). A Human-Like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds) Embodied Artificial Intelligence. Lecture Notes in Computer Science(), vol 3139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27833-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-27833-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22484-6
Online ISBN: 978-3-540-27833-7
eBook Packages: Springer Book Archive