Removing Some ‘A’ from AI: Embodied Cultured Networks

  • Douglas J. Bakkum
  • Alexander C. Shkolnik
  • Guy Ben-Ary
  • Phil Gamblen
  • Thomas B. DeMarse
  • Steve M. Potter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3139)


We embodied networks of cultured biological neurons in simulation and in robotics. This is a new research paradigm to study learning, memory, and information processing in real time: the Neurally-Controlled Animat. Neural activity was subject to detailed electrical and optical observation using multi-electrode arrays and microscopy in order to access the neural correlates of animat behavior. Neurobiology has given inspiration to AI since the advent of the perceptron and consequent artificial neural networks, developed using local properties of individual neurons. We wish to continue this trend by studying the network processing of ensembles of living neurons that lead to higher-level cognition and intelligent behavior.


Neural Activity Dynamical System Theory Intelligent Behavior Neural Firing Average Firing Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiler, I.J., Hawrylak, N., Greenough, W.T.: Morphogenesis in Memory Formation - Synaptic and Cellular Mechanisms. Behavioural Brain Research 66, 1–6 (1995)CrossRefGoogle Scholar
  2. 2.
    Dennett, D.C.: Consciousness Explained. Little, Brown and Co., Boston (1991)Google Scholar
  3. 3.
    Morris, C.G.: Psychology: An Introduction. Appleton-Century-Crofts, New York (1973)Google Scholar
  4. 4.
    Potter, S.M.: Distributed processing in cultured neuronal networks. In: Nicolelis, M.A.L. (ed.) Progress In Brain Research: Advances in Neural Population Coding, pp. 49–62. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  5. 5.
    Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001)CrossRefGoogle Scholar
  6. 6.
    Watanabe, S., Jimbo, Y., Kamioka, H., Kirino, Y., Kawana, A.: Development of low magnesium-induced spontaneous synchronized bursting and GABAergic modulation in cultured rat neocortical neurons. Neuroscience Letters 210, 41–44 (1996)CrossRefGoogle Scholar
  7. 7.
    Gross, G.W., Rhoades, B.K., Kowalski, J.K.: Dynamics of burst patterns generated by monolayer networks in culture. In: Bothe, H.W., Samii, M., Eckmiller, R. (eds.) Neurobionics: An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, North-Holland, Amsterdam, pp. 89–121 (1993)Google Scholar
  8. 8.
    Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H.P.C., Kawana, A.: Spontaneous periodic n synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters 206, 109–112 (1996)CrossRefGoogle Scholar
  9. 9.
    Potter, S.M.: Two-Photon Microscopy for 4D Imaging of Living Neurons. In: Yuste, R., Lanni, F., Konnerth, A. (eds.) Imaging Neurons: A Laboratory Manual, pp. 20.1-20.16. CSHL Press, Cold Spring Harbor (2000)Google Scholar
  10. 10.
    Potter, S.M.: Vital imaging: Two photons are better than one. Current Biology 6, 1595–1598 (1996)CrossRefGoogle Scholar
  11. 11.
    Potter, S.M., Lukina, N., Longmuir, K.J., Wu, Y.: Multi-site two-photon imaging of neurons on multi-electrode arrays. In: SPIE Proceedings, vol. 4262, pp. 104–110 (2001)Google Scholar
  12. 12.
    Wheeler, B.C.: Automatic discrimination of single units. In: Nicolelis, M.A.L. (ed.) Methods for Neural Ensemble Recordings, pp. 61–77. CRC Press, Boca Raton (1999)Google Scholar
  13. 13.
    Wagenaar, D.A., Potter, S.M.: A versatile all-channel stimulator for electrode arrays with real-time control. Journal of Neural Engineering 1, 1–7 (2004)CrossRefGoogle Scholar
  14. 14.
    Meyer, J.A., Wilson, S.W.: From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge (1991)Google Scholar
  15. 15.
    Potter, S.M., Fraser, S.E., Pine, J.: Animat in a Petri Dish: Cultured Neural Networks for Studying Neural Computation. In: Proc. 4th Joint Symposium on Neural Computation, UCSD, pp. 167–174 (1997)Google Scholar
  16. 16.
    DeMarse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies. Autonomous Robots 11, 305–310 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    DeMarse, T.B., Wagenaar, D.A., Potter, S.M.: The neurally-controlled artificial animal: A neural-computer interface between cultured neural networks and a robotic body. Society for Neuroscience Abstracts 28 ,347.1 (2002)Google Scholar
  18. 18.
    Reger, B.D., Fleming, K.M., Sanguineti, V., Alford, S., Mussa-Ivaldi, F.A.: Connecting brains to robots: The development of a hybrid system for the study of learning in neural tissues. In: Proc. of the VIIth Intl. Conf. on Artificial Life, pp. 263–272 (2000)Google Scholar
  19. 19.
    Sharp, A.A., Abbott, L.F., et al.: The Dynamic Clamp: Computer-generated conductances in real neurons (1992) (pre-print)Google Scholar
  20. 20.
    Butera, R.J., Wilson, C.G., DelNegro, C.A., Smith, J.C.: A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. Ieee Transactions on Biomedical Engineering 48, 1460–1470 (2001)CrossRefGoogle Scholar
  21. 21.
    Simoni, M., Cymbaluyk, G., Sorensen, M., Calabrese, R., DeWeerth, S.: Development of Hybrid Systems: Interfacing a Silicon Neuron to a Leech Heart Interneuron. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, NIPS 2000, pp. 173–179. MIT Press, Boston (2001)Google Scholar
  22. 22.
    Braitenberg, V.: Vehicles, experiments in synthetic psychology. MIT Press, Cambridge (1984)Google Scholar
  23. 23.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1999)Google Scholar
  24. 24.
    Brooks, R.A.: Cambrian Intelligence: The Early History of the New AI. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  25. 25.
    Clark, A.: Being There: Putting Brain, Body, and the World Together Again. MIT Press, Cambridge (1997)Google Scholar
  26. 26.
    Shkolnik, A.C.: Neurally Controlled Simulated Robot: Applying Cultured Neurons to Handle and Approach/Avoidance Task in Real Time, and a Framework for Studying Learning In Vitro. In: Potter, S.M., Lu, J. (eds.) Dept. of Mathematics and Computer Science, Emory University, Atlanta (2003)Google Scholar
  27. 27.
    Engert, F., Bonhoeffer, T.: Dendritic spine changes associated with hippocampal longterm synaptic plasticity. Nature 399, 66–70 (1999)CrossRefGoogle Scholar
  28. 28.
    Choi, Y., et al.: High aspect ratio SU-8 structures for 3-D culturing of neurons. In: ASME International Mechanical Engineering Congress and RD&D Expo. Washington, D. C. (2003)Google Scholar
  29. 29.
    Blum, R.A., et al.: A custom multielectrode array with integrated low-noise preamplifiers. In: Akay, M. (ed.) Proceedings of the IEEE Engineering in Medicine and Biology Conference, pp. 3396–3399 (2003)Google Scholar
  30. 30.
    Jimbo, Y., Tateno, T., Robinson, H.P.C.: Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophysical Journal 76, 670–678 (1999)CrossRefGoogle Scholar
  31. 31.
    Tateno, T., Jimbo, Y.: Activity-dependent enhancement in the reliability of correlated spike timings in cultured cortical neurons. Biological Cybernetics 80, 45–55 (1999)zbMATHCrossRefGoogle Scholar
  32. 32.
    Marom, S., Shahaf, G.: Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quarterly Reviews of Biophysics 35, 63–87 (2002)CrossRefGoogle Scholar
  33. 33.
    Eytan, D., Brenner, N., Marom, S.: Selective adaptation in networks of cortical neurons. Journal of Neuroscience 23, 9349–9356 (2003)Google Scholar
  34. 34.
    Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237, 37–72 (1953)CrossRefGoogle Scholar
  35. 35.
    Yamamoto, T., Kuniyoshi, Y.: Stability and controllability in a rising motion: a global dynamics approach. In: International Conference on Intelligent Robots and Systems (IROS). Lausanne, Switzerland, pp. 2467–2472 (2002)Google Scholar
  36. 36.
    Fodor, J.A.: Methodological Solipsism Considered as a Research Strategy in Cognitive- Psychology. Behavioral and Brain Sciences 3, 63–73 (1980)CrossRefGoogle Scholar
  37. 37.
    Vera, A.H., Simon, H.A.: Situated Action - a Symbolic Interpretation. Cognitive Science 17, 7–48 (1993)CrossRefGoogle Scholar
  38. 38.
    Edelman, G.M., Tononi, G.: A universe of consciousness: how matter becomes imagination. Basic Books, New York (2000)Google Scholar
  39. 39.
    Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)CrossRefGoogle Scholar
  40. 40.
    James, W.: The principles of psychology. H. Holt, New York (1890)Google Scholar
  41. 41.
    Nakanishi, K., Kukita, F.: Functional synapses in synchronized bursting of neocortical neurons in culture. Brain Research 795, 137–146 (1998)CrossRefGoogle Scholar
  42. 42.
    Corner, M.A., Ramakers, G.J.: Spontaneous bioelectric activity as both dependent and independent variable in cortical maturation. Chronic tetrodotoxin versus picrotoxin effects on spike-train patterns in developing rat neocortex neurons during long-term culture. Ann. N Y Acad. Sci. 627, 349–353 (1991)CrossRefGoogle Scholar
  43. 43.
    Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks. I. Theory. Journal of Neurophysiology 83, 808–827 (2000)Google Scholar
  44. 44.
    Tabak, J., Latham, P.E.: Analysis of spontaneous bursting activity in random neural networks. Neuroreport 14, 1445–1449 (2003)CrossRefGoogle Scholar
  45. 45.
    Latham, P.E., Richmond, B.J., Nirenberg, S., Nelson, P.G.: Intrinsic dynamics in neuronal networks. II. Experiment. Journal of Neurophysiology 83, 828–835 (2000)Google Scholar
  46. 46.
    Rutter, M.: Developmental catch-up, and deficit, following adoption after severe global early privation. Journal of Child Psychology and Psychiatry and Allied Disciplines 39, 465–476 (1998)CrossRefGoogle Scholar
  47. 47.
    O’Connor, T.G., Rutter, M., Beckett, C., Keaveney, L., Kreppner, J.M.: The effects of global severe privation on cognitive competence: Extension and longitudinal follow-up. Child Development 71, 376–390 (2000)CrossRefGoogle Scholar
  48. 48.
    Black, J.E., Isaacs, K.R., Anderson, B.J., Alcantara, A.A., Greenough, W.T.: Learning Causes Synaptogenesis, Whereas Motor-Activity Causes Angiogenesis, in Cerebellar Cortex of Adult-Rats. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 87, pp. 5568–5572 (1990)Google Scholar
  49. 49.
    Diamond, M.: Morphological cortical changes as a consequence of learning and experience. In: Scheibel, A.B., Wechsler, A.F. (eds.) Neurobiology of Higher Cognitive Function, p. 370. Guilford Press, New York (1990)Google Scholar
  50. 50.
    Gross, C.G.: Neurogenesis in the adult brain: death of a dogma. Nature Reviews Neuroscience 1, 67–73 (2000)CrossRefGoogle Scholar
  51. 51.
    Kuhl, P.K., et al.: Cross-language analysis of phonetic units in language addressed to infants Science, vol. 227, pp. 684–686 (1997)Google Scholar
  52. 52.
    Buonomano, D.V., Merzenich, M.M.: Cortical plasticity: From synapses to maps. Annual Review of Neuroscience 21, 149–186 (1998)CrossRefGoogle Scholar
  53. 53.
    Ramachandran, V.S., Hirstein, W.: The perception of phantom limbs - The D.O. Hebb lecture. Brain 121, 1603–1630 (1998)CrossRefGoogle Scholar
  54. 54.
    Varela, F.J., Thompson, E., Rosch, E.: The embodied mind: cognitive science and human experience. MIT Press, Cambridge (1993)Google Scholar
  55. 55.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)Google Scholar
  56. 56.
    Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Gosset/Putnam Press, New York (1994)Google Scholar
  57. 57.
    Wagenaar, D.A., Potter, S.M.: Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Methods 120, 113–120 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Douglas J. Bakkum
    • 1
  • Alexander C. Shkolnik
    • 2
  • Guy Ben-Ary
    • 3
  • Phil Gamblen
    • 3
  • Thomas B. DeMarse
    • 4
  • Steve M. Potter
    • 1
  1. 1.Georgia Institute of Technology 
  2. 2.Massachusetts Institute of Technology 
  3. 3.University of Western Australia 
  4. 4.University of Florida 

Personalised recommendations