Skip to main content

Maximum Weight Independent Sets and Matchings in Sparse Random Graphs

Exact Results Using the Local Weak Convergence Method

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (RANDOM 2004, APPROX 2004)

Abstract

Let G(n,c/n) and G r (n) be an n-node sparse random and a sparse random r-regular graph, respectively, and let \({\cal I}(n,c)\) and \({\cal I}(n,r)\) be the sizes of the largest independent set in G(n,c/n) and G r (n). The asymptotic value of \({\cal I}(n,c)/n\) as n→∞, can be computed using the Karp-Sipser algorithm when ce. For random cubic graphs, r=3, it is only known that \(.432\leq\liminf_n {\cal I}(n,3)/n \leq \limsup_n {\cal I}(n,3)/n\leq .4591\) with high probability (w.h.p.) as n→∞, as shown in [FS94] and [Bol81], respectively.

In this paper we assume in addition that the nodes of the graph are equipped with non-negative weights, independently generated according to some common distribution, and we consider instead the maximum weight of an independent set. Surprisingly, we discover that for certain weight distributions, the limit \(\lim_n {\cal I}(n,c)/n\) can be computed exactly even when c>e, and \(\lim_n {\cal I}(n,r)/n\) can be computed exactly for some r≥ 2. For example, when the weights are exponentially distributed with parameter 1, \(\lim_n {\cal I}(n,2e)/n\approx .5517\) in G(n,c/n), and \(\lim_n {\cal I}(n,3)/n\approx .6077\) in G 3(n). Our results are established using the recently developed local weak convergence method further reduced to a certain local optimality property exhibited by the models we consider. We extend our results to maximum weight matchings in G(n,c/n) and G r (n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, A., Bandyopadhyay, A.: A survey of max-type recursive distributional equations. (preprint)

    Google Scholar 

  2. Aldous, D.: Some open problems, http://stat-www.berkeley.edu/users/aldous/ Research/problems.ps

  3. Aldous, D.: Asymptotics in the random assignment problem. Probab.Th. Rel.Fields 93, 507–534 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aldous, D.: The ζ(2) limit in the random assignment problem. Random Structures and Algorithms 18, 381–418 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aronson, J., Pittel, B., Frieze, A.: Maximum matchings in sparse random graphs: Karp-Sipser revisited. Random Structures and Algorithms 12, 11–178 (1998)

    Article  MathSciNet  Google Scholar 

  6. Aldous, D., Steele, J.M.: The objective method: Probabilistic combinatorial optimization and local weak convergence. In: Kesten, H. (ed.) Discrete Combinatorial Probability, Springer, Heidelberg (2003)

    Google Scholar 

  7. Bandyopadhyay, A.: Max-type recursive distributional equations. University of California, Berkeley (2003)

    Google Scholar 

  8. Bollobas, B.: A probabilistic proof of an asymptotic formula for the number of regular graphs. European J. Combinatorics 1, 311–316 (1980)

    MATH  MathSciNet  Google Scholar 

  9. Bollobas, B.: The independence ratio of regular graphs. Proc. Amer. Math. Soc. 83(2), 433–436 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brightwell, G.R., Winkler, P.: Gibbs extremality for the hard-core model on a Bethe lattice (2003) (preprint)

    Google Scholar 

  11. Frieze, A., Suen, S.: On the independence number of random cubic graphs. Random Structures and Algorithms 5, 649–664 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gamarnik, D.: Linear phase transition in random linear constraint satisfaction problems. Probability Theory and Related Fields 129(3), 410–440 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gamarnik, D., Nowicki, T., Swirscsz, G.: Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method, arXiv:math.PR/0309441 (2003)

    Google Scholar 

  14. Hopkins, G.W., Staton, W.: Girth and independence ratio. Canad. Math. Bull 25, 179–186 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hartmann, A.K., Weigt, M.: Statistical mechanics perspective on the phase transition of vertex covering of finite-connectivity random graphs. Theoretical Computer Science 265, 199–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Janson, S., Luczak, T., Rucinski, A.: Random graphs. John Wiley and Sons, Inc. Chichester (2000)

    MATH  Google Scholar 

  17. Karp, R., Sipser, M.: Maximum matchings in sparse random graphs. In: 22nd Annual Symposium on Foundations of Computer Science, pp. 364–375 (1981)

    Google Scholar 

  18. Martin, J.: Reconstruction thresholds on regular trees.(2003) (preprint)

    Google Scholar 

  19. Mossel, E.: Survey: information flow on trees (2003) (preprint)

    Google Scholar 

  20. Martinelli, F., Sinclair, A., Weitz, D.: The Ising model on trees: boundary conditions and mixing time. In: Proc. 44th IEEE Symposium on Foundations of Computer Science (2003)

    Google Scholar 

  21. Rozikov, U.A., Suhov, U.M.: A hard-core model on a Cayley tree: an example of a loss network (2003) (preprint)

    Google Scholar 

  22. Steele, J.M.: Minimal spanning trees for graphs with random edge lenghts. Mathematics and Computer Science II. Algorithms, Trees, Combinatorics and Probabilities, 223–246 (2002)

    Google Scholar 

  23. Talagrand, M.: An assignment problem at high temperature. Annals of Probability 31(2), 818–848 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gamarnik, D., Nowicki, T., Swirszcz, G. (2004). Maximum Weight Independent Sets and Matchings in Sparse Random Graphs. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2004 2004. Lecture Notes in Computer Science, vol 3122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27821-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27821-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22894-3

  • Online ISBN: 978-3-540-27821-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics