Inferring Mixtures of Markov Chains

  • Tuğkan Batu
  • Sudipto Guha
  • Sampath Kannan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3120)


We define the problem of inferring a “mixture of Markov chains” based on observing a stream of interleaved outputs from these chains. We show a sharp characterization of the inference process. The problems we consider also has applications such as gene finding, intrusion detection, etc., and more generally in analyzing interleaved sequences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, N., Warmuth, M.: On the computational complexity of approximating distributions by probabilistic automata. Machine Learning (1992) (to appear in the special issue for COLT 1990).Google Scholar
  2. 2.
    Abiteboul, S., Vianu, V., Fordham, B., Yesha,Y.: Relational transducersfor electronic commerce. pp. 179–187 (1998) Google Scholar
  3. 3.
    Arora, S., Kannan, R.: Learning mixtures of arbitrary gaussians. In: ACM Symposium on Theory of Computing, pp. 247–257 (2001)Google Scholar
  4. 4.
    Bengio, Y., Frasconi, P.: Input-output HMM’s for sequence processing. IEEE Transactions on Neural Networks 7(5), 1231–1249 (1996)CrossRefGoogle Scholar
  5. 5.
    Burge, C.B., Karlin, S.: Finding the genes in genomic dna. J. Mol. Bio. 268(7), 8–94 (1997)Google Scholar
  6. 6.
    Dasgupta, S.: Learning mixtures of gaussians. Technical Report CSD-99-1047, University of California, Berkeley, May 19 (1999) Google Scholar
  7. 7.
    Denning, D.E.: An intrusion-detection model. Transactions of software engineering 13(2), 222–232 (1987)CrossRefGoogle Scholar
  8. 8.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, New York (1974)Google Scholar
  9. 9.
    Fawcett, T., Provost, F.J.: Adaptive fraud detection. Data Mining and Knowledge Discovery 1(3), 291–316 (1997)CrossRefGoogle Scholar
  10. 10.
    Freund, Y., Ron, D.: Learning to model sequences generated by switching distributions. In: Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT1995), July 1995, pp. 41–50. ACM Press, New York (1995)CrossRefGoogle Scholar
  11. 11.
    Kervrann, C., Heitz, F.: A hierarchical Markov modeling approach for the segmentation and tracking of deformable shapes. Graphical models and image processing: GMIP 60(3), 173–195 (1998)CrossRefGoogle Scholar
  12. 12.
    Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework forbuilding intrusion detection models. In: IEEE Symposium on Security and Privacy, pp. 120–132 (1999)Google Scholar
  13. 13.
    Levy, A.Y., Weld, D.S.: Intelligent internet s ystems. Artificial Intelligence 118(1-2), 1–14 (2000)CrossRefGoogle Scholar
  14. 14.
    Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2) (1989)Google Scholar
  15. 15.
    Spielmann, M.: Verification of relational transducers for electronic commerce. In: Symposium on Principles of Database Systems, pp. 92–103 (2000)Google Scholar
  16. 16.
    Thiesson, B. Meek, C., Chickering, D., Heckerman, D.: Learning mixtures of Bayesian networks. Technical Report MSR-TR-97-30, Microsoft Research, Redmond, WA (1997) Google Scholar
  17. 17.
    Thiesson, B., Meek, C., Chickering, D.M., Heckerman, D.: Learning mixtures of DAG models. In: Cooper, G.F., Moral, S. (eds.) Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), July 24–26, pp. 504–513. Morgan Kaufmann, San Francisco (1998)Google Scholar
  18. 18.
    Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system calls: Alternative data models. In: IEEE Symposium on Security and Privacy, pp. 133–145 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tuğkan Batu
    • 1
  • Sudipto Guha
    • 2
  • Sampath Kannan
    • 2
  1. 1.Department of Computer SciencesUniversity of TexasAustin
  2. 2.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia

Personalised recommendations