Skip to main content

Managing Heterogeneous Theories within a Mathematical Knowledge Repository

  • Conference paper
Mathematical Knowledge Management (MKM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3119))

Included in the following conference series:

Abstract

The problem of the integrity of a computer managed mathematical knowledge repository is in the heart of MKM since mathematical vernacular is a language permitting plenty of ways in expressing the same meaning. The users of the library are naturally forced to choose certain way among many similar ones, unless different approaches are provided by developers. Mizar is a system for formalizing mathematical content which is sufficient mature and flexible for a coexistence of different approaches of concrete subjects. Considering Mizar formalizations of ortholattice theory we discuss a useful mechanism of coping with the heterogeneity of theories in a library of mathematical facts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bancerek, G.: On the structure of Mizar types. In: Geuvers, H., Kamareddine, F. (eds.) Proc. of MLC 2003. ENTCS, vol. 85(7) (2003)

    Google Scholar 

  2. Bancerek, G.: Development of the theory of continuous lattices in Mizar. In: Kerber, M., Kohlhase, M. (eds.) Proceedings of the Symposium on Calculemus 2000, pp. 65–80 (2001)

    Google Scholar 

  3. Buchberger, B.: Mathematical Knowledge Management in Theorema. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of MKM 2001, Linz, Austria (2001)

    Google Scholar 

  4. Constable, R.L.: Steps toward a World Wide Digital Library of Formal Mathematics. In: MKM Symposium, Edinburgh, UK (2003)

    Google Scholar 

  5. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen, http://www.cs.kun.nl/~freek/notes/

  6. Davenport, J.: Mathematical knowledge representation. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of MKM 2001, Linz, Austria (2001)

    Google Scholar 

  7. Farmer, W., Guttman, J., Thayer, F.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)

    Google Scholar 

  8. Giuntini, R.: Quantum Logic and Hidden Variables, Bibliographisches Institute, Mannheim (1991)

    Google Scholar 

  9. Grabowski, A.: Robbins algebras vs. Boolean algebras. Formalized Mathematics 9(4), 681–690 (2001)

    MATH  Google Scholar 

  10. Grabowski, A., Moschner, M.: Formalization of ortholattices via orthoposets. Formalized Mathematics (to appear, 2004)

    Google Scholar 

  11. Grätzer, G.: General Lattice Theory. Academic Press, New York (1978)

    Book  MATH  Google Scholar 

  12. Kozarkiewicz, V., Grabowski, A.: Axiomatization of lattices in terms of the Sheffer stroke. Formalized Mathematics (to appear, 2004)

    Google Scholar 

  13. McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. The Mizar Home Page, http://mizar.org

  15. Moschner, M.: Basic notions and properties of orthoposets. Formalized Mathematics 11(2), 201–210 (2003)

    Google Scholar 

  16. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Prevosto, V., Jaume, M.: Making proofs in a hierarchy of mathematical structures. In: Hardin, T., Rioboo, R. (eds.) Proceedings of Calculemus 2003, Rome, Italy (2003)

    Google Scholar 

  18. Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of MKM 2001, Linz, Austria (2001)

    Google Scholar 

  19. Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 162–174. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Urban, J.: MPTP 0.1. In: Dahn, I., Vigneron, L. (eds.) Proc. of FTP 2003. ENTCS, vol. 86(1) (2003)

    Google Scholar 

  21. Wenzel, M.: Lattices and orders in Isabelle/HOL, http://isabelle.in.tum.de/library/HOL/Lattice

  22. Wiedijk, F.: Formal proof sketches, http://www.cs.kun.nl/~freek/notes/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabowski, A., Moschner, M. (2004). Managing Heterogeneous Theories within a Mathematical Knowledge Repository. In: Asperti, A., Bancerek, G., Trybulec, A. (eds) Mathematical Knowledge Management. MKM 2004. Lecture Notes in Computer Science, vol 3119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27818-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27818-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23029-8

  • Online ISBN: 978-3-540-27818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics