Advertisement

Classifying Differential Equations on the Web

  • Dirk Draheim
  • Winfried Neun
  • Dima Suliman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3119)

Abstract

In this paper we describe the semantic analysis of differential equations given in the ubiquitous formats MathML and OpenMath. The analysis is integrated in a deployed Web indexing framework. Starting from basic classifications for differential equations the proposed system architecture is amenable to extensions for further reconstruction of mathematical content on the Web. The syntactic analysis of mathematical formulae given in the considered formats must overcome ambiguities that stem from the fact that formula particles may have different encodings, which are in principle completely arbitrary. However, it turns out that the syntactic analysis can be done straightforward given some natural heuristic assumptions.

Keywords

Mathematical Knowledge Mathematical Content Abstract Syntax Syntactic Analysis Abstract Syntax Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowman, C.M., Danzig, P.B., Hardy, D.R., Manber, U., Schwartz, M.F., Wessels, D.P.: Harvest: A scalable, customizable discovery and access system, Technical Report CU-CS-732-94. University of Colorado, Boulder, USA (1994)Google Scholar
  2. 2.
    Dalmas, S., Gaëtano, M., Huchet, C.: A deductive database for mathematical formulae. In: Limongelli, C., Calmet, J. (eds.) DISCO 1996. LNCS, vol. 1128, pp. 287–296. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Dalmas, S., Gaëtano, M.: Indexing mathematics with SearchFor. In: International MathML Conference 2000 – MathML and Math on the Web (2000)Google Scholar
  4. 4.
    Design Science Inc., WebEQ version 3.5 (2003)Google Scholar
  5. 5.
    Einwohner, T.H., Fateman, R.J.: Searching techniques for integral tables. In: Proceedings ISSAC 1995. ACM, New York (1995)Google Scholar
  6. 6.
    Franke, A., Kohlhase, M.: System Description: MBASE, an Open Mathematical Knowledge Base. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 455–459. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Franke, A., Kohlhase, M.: MBase: representing knowledge and context for the integration of mathematical software systems. Journal of Symbolic Computation 32(4), 365–402 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hearn, A.C.: REDUCE 2: A system and language for algebraic manipulation. In: Proceedings of the 2nd ACM Symposium on Symbolic and Algebraic Manipulation. ACM Press, New York (1971)Google Scholar
  9. 9.
    Heumesser, B.D., Seipel, D., Güntzer, U.: An expert system for the flexible processing of XML-based mathematical knowledge in a PROLOG-environment. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 133–146. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösungen, Akademische Verlagsgesellschaft (1967)Google Scholar
  11. 11.
    Lee, K.J.: Development Status of Harvest. In: Proceedings of SINN 2003 Conference - Worldwide Coherent Workforce, Satisfied Users: New Services For Scientific Information (2003), http://www.isn-oldenburg.de/projects/SINN/sinn03/proceedings.html
  12. 12.
    Maplesoft Inc., Maple version 9 (2003)Google Scholar
  13. 13.
    Mathematical Markup Language (MathML) Version 2.0, W3C Recommendation (February 21, 2001)Google Scholar
  14. 14.
  15. 15.
    Neun, W.: Harvesting webpages that contain mathematical information. In: Proceedings of SINN 2003 Conference - Worldwide Coherent Workforce, Satisfied Users: New Services For Scientific Information (2003), http://www.isn-oldenburg.de/projects/SINN/sinn03/proceedings.html
  16. 16.
    The OpenMath Web Site, http://www.openmath.org
  17. 17.
    Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(k) parser generator. Journal of Software-Practice & Experience 25(7), 789–810 (1995)CrossRefGoogle Scholar
  18. 18.
    Wolfram Research Inc., Mathematica version 5 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dirk Draheim
    • 2
  • Winfried Neun
    • 1
  • Dima Suliman
    • 1
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik BerlinBerlinGermany
  2. 2.Institute of Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations