Skip to main content

Mathematical Service Matching Using Description Logic and OWL

  • Conference paper
Mathematical Knowledge Management (MKM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3119))

Included in the following conference series:

Abstract

Web Service technology is increasingly being used to develop distributed applications, however the convention is to describe individual services in terms of the interfaces that they expose, rather in terms of the function that they perform. In this paper we describe a mechanism for encoding information about mathematical web services which is rich enough to allow a potential client to identify automatically all those services which may be capable of performing a particular task. This mechanism makes use of the Web Ontology Language (OWL) and a novel approach to Description Logic reasoning exploiting enterprise database technologies.

This work was funded by the European Union under the aegis of the MONET Project (IST-2001-34145). The authors gratefully acknowledge the work of the other partners in the project: Stilo International PLC, the Universities of Bath, Eindhoven, Nice and Western Ontario, and CNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook – Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baraka, R., Caprotti, O., Schreiner, W.: Publishing and Discovering Mathematical Service Descriptions: A Web Registry Approach, Technical report, RISC-Linz Technical Report (2004)

    Google Scholar 

  3. Bechhofer, S.: OWL API Project, http://sourceforge.net/projects/owlapi

  4. Bechhofer, S.: The DIG description logic interface: DIG/1.1. In: Proceedings of the 2003 Description Logic Workshop (DL 2003) (2003)

    Google Scholar 

  5. Bechhofer, S., Horrocks, I., Turi, D.: Instance store – database support for reasoning over individuals (2002), http://instancestore.man.ac.uk/instancestore.pdf

  6. Bechhofer, S., Patel-Schneider, P.F., Turi, D.: OWL Web Ontology Language Concrete Abstract Syntax, Technical report, The University of Manchester (December 2003), available from: http://owl.man.ac.uk/2003/concrete/latest/

  7. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference, Technical Report REC-owl-ref-20040210, The World Wide Web Consortium (February 2004), available from: http://www.w3.org/TR/2004/REC-owl-ref-20040210/

  8. Boisvert, R.F., Howe, S.E., Kahaner, D.K.: Gams: A framework for the management of scientific software. ACM Transactions on Mathematical Software 11(4), 313–355 (1985)

    Article  MATH  Google Scholar 

  9. Caprotti, O., Carlisle, D., Cohen, A., Dewar, M.: The Mathematical Problem Ontology: final version, Technical Report Deliverable D11, The MONET Consortium (March 2003), available from: http://monet.nag.co.uk

  10. Caprotti, O., Davenport, J.H., Dewar, M., Padget, J.: Mathematics on the (Semantic) NET. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 213–224. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J., Weerawarana, S.: Web Services Description Language (WSDL) version 2.0 part 1: Core language. W3c working draft, The World Wide Web Consortium (March 26, 2004), http://www.w3.org/TR/wsdl20/

  12. Haarslev, V., Moller, R.: Description of the RACER system and its applications. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083. Springer, Heidelberg (2001)

    Google Scholar 

  13. Horrocks, I., et al.: DAML+OIL, Technical Report REC-xslt-19991116, Joint US/EU ad hoc Agent Markup Language Committee (March 2001), available from: http://www.daml.org/2001/03/daml+oil-index.html

  14. Manola, F., Miller, E.: RDF Primer, Technical Report REC-rdf-primer-20040210, The World Wide Web Consortium (February 2004), available from: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

  15. MathSciNet, http://www.ams.org/mathscinet

  16. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2), available from: http://www.mathweb.org/omdoc/omdoc1.2.ps

  17. Minsky, M.: A framework for representing knowledge. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York (1975)

    Google Scholar 

  18. The MONET Consortium, Mathematical Service Description Language: Final version, Technical Report Deliverable D14, The MONET Consortium (March 2003), available from: http://monet.nag.co.uk

  19. Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing. MIT Press, Cambridge (1968)

    Google Scholar 

  20. OASIS/ebXML Registry Technical Committee, OASIS/ebXML Registry Services Specification v2.0 (2002), http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf

  21. The OpenMath Society, The OpenMath Standard (October 2002), available from: http://www.openmath.org/standard/om11/omstd11.xml

  22. Richardson, D.: Some unsolvable problems involving elementary functions of a real variable. Journal of Computational Logic 33, 514–520 (1968)

    MATH  Google Scholar 

  23. Turi, D.: Instance Store Project, http://instancestore.man.ac.uk

  24. Zentralblatt Math. http://www.emis.de/ZMATH/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caprotti, O., Dewar, M., Turi, D. (2004). Mathematical Service Matching Using Description Logic and OWL . In: Asperti, A., Bancerek, G., Trybulec, A. (eds) Mathematical Knowledge Management. MKM 2004. Lecture Notes in Computer Science, vol 3119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27818-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27818-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23029-8

  • Online ISBN: 978-3-540-27818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics