Mathematical Service Matching Using Description Logic and OWL

  • Olga Caprotti
  • Mike Dewar
  • Daniele Turi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3119)


Web Service technology is increasingly being used to develop distributed applications, however the convention is to describe individual services in terms of the interfaces that they expose, rather in terms of the function that they perform. In this paper we describe a mechanism for encoding information about mathematical web services which is rich enough to allow a potential client to identify automatically all those services which may be capable of performing a particular task. This mechanism makes use of the Web Ontology Language (OWL) and a novel approach to Description Logic reasoning exploiting enterprise database technologies.


Description Logic Service Description Service Registration Service Match Query Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook – Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Baraka, R., Caprotti, O., Schreiner, W.: Publishing and Discovering Mathematical Service Descriptions: A Web Registry Approach, Technical report, RISC-Linz Technical Report (2004)Google Scholar
  3. 3.
    Bechhofer, S.: OWL API Project,
  4. 4.
    Bechhofer, S.: The DIG description logic interface: DIG/1.1. In: Proceedings of the 2003 Description Logic Workshop (DL 2003) (2003)Google Scholar
  5. 5.
    Bechhofer, S., Horrocks, I., Turi, D.: Instance store – database support for reasoning over individuals (2002),
  6. 6.
    Bechhofer, S., Patel-Schneider, P.F., Turi, D.: OWL Web Ontology Language Concrete Abstract Syntax, Technical report, The University of Manchester (December 2003), available from:
  7. 7.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference, Technical Report REC-owl-ref-20040210, The World Wide Web Consortium (February 2004), available from:
  8. 8.
    Boisvert, R.F., Howe, S.E., Kahaner, D.K.: Gams: A framework for the management of scientific software. ACM Transactions on Mathematical Software 11(4), 313–355 (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    Caprotti, O., Carlisle, D., Cohen, A., Dewar, M.: The Mathematical Problem Ontology: final version, Technical Report Deliverable D11, The MONET Consortium (March 2003), available from:
  10. 10.
    Caprotti, O., Davenport, J.H., Dewar, M., Padget, J.: Mathematics on the (Semantic) NET. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 213–224. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J., Weerawarana, S.: Web Services Description Language (WSDL) version 2.0 part 1: Core language. W3c working draft, The World Wide Web Consortium (March 26, 2004),
  12. 12.
    Haarslev, V., Moller, R.: Description of the RACER system and its applications. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Horrocks, I., et al.: DAML+OIL, Technical Report REC-xslt-19991116, Joint US/EU ad hoc Agent Markup Language Committee (March 2001), available from:
  14. 14.
    Manola, F., Miller, E.: RDF Primer, Technical Report REC-rdf-primer-20040210, The World Wide Web Consortium (February 2004), available from:
  15. 15.
  16. 16.
    Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2), available from:
  17. 17.
    Minsky, M.: A framework for representing knowledge. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York (1975)Google Scholar
  18. 18.
    The MONET Consortium, Mathematical Service Description Language: Final version, Technical Report Deliverable D14, The MONET Consortium (March 2003), available from:
  19. 19.
    Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing. MIT Press, Cambridge (1968)Google Scholar
  20. 20.
    OASIS/ebXML Registry Technical Committee, OASIS/ebXML Registry Services Specification v2.0 (2002),
  21. 21.
    The OpenMath Society, The OpenMath Standard (October 2002), available from:
  22. 22.
    Richardson, D.: Some unsolvable problems involving elementary functions of a real variable. Journal of Computational Logic 33, 514–520 (1968)zbMATHGoogle Scholar
  23. 23.
    Turi, D.: Instance Store Project,
  24. 24.
    Zentralblatt Math.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Olga Caprotti
    • 1
  • Mike Dewar
    • 2
  • Daniele Turi
    • 3
  1. 1.RISC-LinzJohannes Kepler UniversityLinzAustria
  2. 2.NAG Ltd.OxfordUK
  3. 3.Information Management Group, Dept of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations