Advertisement

Informalising Formal Mathematics: Searching the Mizar Library with Latent Semantics

  • Paul Cairns
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3119)

Abstract

Finding required information in a library of mathematics can be problematic, just as in any other library. However, so far, there are no strong search methods based on the semantics of formal mathematics. This paper describes a new approach based on latent semantic indexing (LSI). Using this, the semantics of terms need not be explicitly defined but is indirectly inferred from a body of documents in which the terms occur. The Mizar library is used as it is a substantial resource of formal mathematics. The system described in the paper adapts Mizar articles to produce an appropriate body of documents that can be used by LSI. Preliminary tests suggest that this approach is able to provide a useful mechanism for the search and retrieval of formal mathematics.

Keywords

Information Retrieval Singular Value Decomposition Mathematical Knowledge Query Term Latent Semantic Indexing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Buchberger, B., Davenport, J.H.: MKM 2003. LNCS, vol. 2594. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bancerek, G., Rudnicki, P.: Information Retrieval in MML. In: [1], pp. 119–132 (2003)Google Scholar
  3. 3.
    Bancerek, G.: Sequences of ordinal numbers. Formalized Mathematics 1(2), 281–290 (1990)Google Scholar
  4. 4.
    Bancerek, G.: Tarski’s classes and ranks. Formalized Mathematics 1(3), 563–567 (1990)Google Scholar
  5. 5.
    Baumgartner, P., Furbach, U.: Automated Deduction Techniques for the Management of Personalized Documents. Annals of Mathematics and Art. Intelligence 38, 211–288 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Berry, M.W., Dumais, S.: Latent Semantic Indexing Web Site (accessed March 29, 2004), http://www.cs.utk.edu/~lsi
  7. 7.
    Byliński, C.: The modification of a function by a function and the iterations of the composition of a function. Formalized Mathematics 1(3), 521–527 (1990)Google Scholar
  8. 8.
    Cairns, P., Gow, J.: Using and parsing the Mizar language. Electronic Notes in Theoretical Computer Science, vol. 93, pp. 60–69. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  9. 9.
    Delahaye, D.: Information Retrieval in a Coq Proof Library Using Type Isomorphisms. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.) TYPES 1999. LNCS, vol. 1956, pp. 131–147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Giles, J.T., Wo, L., Berry, M.W.: GTP (General Text Parser) software for text mining. In: Bozdogan, H. (ed.) Statistical Data Mining and Knowledge Discovery, pp. 457–473. CRC Press, Boca Raton (2001)Google Scholar
  11. 11.
    Hryniewiecki, K.: Relations of tolerance. Formalized Mathematics 2(1), 105–109 (1991)Google Scholar
  12. 12.
    Java Compiler Compiler (accessed March 31, 2004), http://javacc.dev.java.net
  13. 13.
    Karno, Z.: Remarks on special subsets of topological spaces. Formalized Mathematics 3(2), 297–303 (1992)Google Scholar
  14. 14.
    Korniłowicz, A.: The definition and basic properties of topological groups. Formalized Mathematics 7(2), 217–225 (1998)Google Scholar
  15. 15.
    Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis. Discourse Processes 25, 259–284 (1998)CrossRefGoogle Scholar
  16. 16.
    Landauer, T.K.: LSA@Colorado University (accessed March 31, 2004), http://lsa.colorado.edu
  17. 17.
    Miller, B.R., Youssef, A.: Technical aspects of the Digital Library of Mathematical Functions. Annals of Mathematics and Art. Intelligence 38, 121–136 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mirel, B.: Interaction Design for Complex Problem Solving. Morgan Kaufmann, San Francisco (2004)Google Scholar
  19. 19.
    Wysocki, M., Darmochwał, A.: Subsets of Topological Spaces. Formalized Mathematics 1(1), 231–237 (1990)Google Scholar
  20. 20.
    The Mizar Mathematical Library, http://mizar.org
  21. 21.
    Philips, L., Jørgensen, M.W.: Discourse Analysis as Theory and Method. Sage Publications, Thousand Oaks (2002)CrossRefGoogle Scholar
  22. 22.
    Rudnicki, P.: An overview of the Mizar project. In: Proceedings of 1992 Workshop on Types and Proofs for Programs (1992)Google Scholar
  23. 23.
    Text REtrieval Conference (TREC) (accessed March 31, 2004), http://trec.nist.gov
  24. 24.
    Wiedijk, F.: Comparing Mathematical Provers. In: [1], pp. 188–202Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Paul Cairns
    • 1
  1. 1.UCL Interaction CentreUniversity College LondonLondonUK

Personalised recommendations