Adaptive Access to a Proof Planner

  • Erica Melis
  • Andreas Meier
  • Martin Pollet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3119)


Mathematical tools such as computer algebra systems and interactive and automated theorem provers are complex systems and can perform difficult computations. Typically, such tools are used by a (small) group of particularly trained and skilled users to assist in mathematical problem solving. They can also be used as back-engines for interactive exercises in learning environments. This, however, suggests the adaptation of the choice of functionalities of the tool to the learner. This paper addresses the adaptive usage of the proof planner Multi for the learning environment ActiveMath. The proof planner is a back-engine for interactive proof exercises. We identify different dimensions in which the usage of such a service system can be adapted and investigate the architecture realizing the adaptive access to Multi.


Computer Algebra System Constraint Solver Student Model Automate Theorem Prover Interactive Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aspinall, D.: Proof general kit, white paper (2002), available from:
  2. 2.
    Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  3. 3.
    Kohlhase, M.: OMDOC: Towards an internet standard for the administration, distribution and teaching of mathematical knowledge. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Meier, A., Melis, E., Pollet, M.: Adaptable mixed-initiative proof planning for educational interaction. Electronic Notes in Theoretical Computer Science (to appear, 2004)Google Scholar
  5. 5.
    Meier, A., Pollet, M., Sorge, V.: Comparing approaches to the exploration of the domain of residue classes. Journal of Symbolic Computation, Special Issue on the Integration of Automated Reasoning and Computer Algebra Systems 34(4), 287–306 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Melis, E., Buedenbender, J., Andres, E., Frischauf, A., Goguadse, G., Libbrecht, P., Pollet, M., Ullrich, C.: ACTIVEMATH: A generic and adaptive web-based learning environment. Artificial Intelligence and Education 12(4), 385–407 (2001)Google Scholar
  7. 7.
    Melis, E., Glasmacher, C., Ullrich, C., Gerjets, P.: Automated proof planning for instructional design. In: Annual Conference of the Cognitive Science Society, pp. 633–638 (2001)Google Scholar
  8. 8.
    Melis, E., Meier, A.: Proof planning with multiple strategies. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 644–659. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Melis, E., Siekmann, J.: Knowledge-based proof planning. Artificial Intelligence 115(1), 65–105 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Melis, E., Zimmer, J., Müller, T.: Extensions of constraint solving for proof planning. In: European Conference on Artificial Intelligence, pp. 229–233 (2000)Google Scholar
  11. 11.
    Polya, G.: How to Solve it. Princeton University Press, Princeton (1945)zbMATHGoogle Scholar
  12. 12.
    Redfern, D.: The Maple Handbook: Maple V Release 5. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  13. 13.
    Reiss, K., Hellmich, F., Thomas, J.: Individuelle und schulische Bedingungsfaktoren für Argumentationen und Beweise im Mathematikunterricht. In: Schulische und außerschulische Bedingungen mathematischer, naturwissenschaftlicher und überfachlicher Kompetenzen. Beiheft der Zeitschrift für Pädagogik, pp. 51–64. Beltz (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Erica Melis
    • 1
  • Andreas Meier
    • 1
  • Martin Pollet
    • 2
  1. 1.German Research Institute for Artificial Intelligence (DFKI)SaarbrückenGermany
  2. 2.Saarland UniversitySaarbrückenGermany

Personalised recommendations