Predicate Logic with Sequence Variables and Sequence Function Symbols

  • Temur Kutsia
  • Bruno Buchberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3119)


We extend first-order logic with sequence variables and sequence functions. We describe syntax, semantics and inference system for the extension, define an inductive theory with sequence variables and formulate induction rules. The calculus forms a basis for the top-down systematic theory exploration paradigm.


Sequence Variable Inference Rule Function Symbol Predicate Logic Sequence Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An Interactive Mathematical Proof System,
  2. 2.
    The Coq Proof Assistant,
  3. 3.
    The MIZAR Project,
  4. 4.
  5. 5.
    Bledsoe, W.W., Feng, G.: SET-VAR. J. Automated Reasoning 11(3), 293–314 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boley, H.: A Tight, Practical Integration of Relations and Functions. LNCS (LNAI), vol. 1712. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Buchberger, B.: Mathematica as a rewrite language. In: Ida, T., Ohori, A., Takeichi, M. (eds.) Proc. of the 2nd Fuji Int. Workshop on Functional and Logic Programming, Shonan Village Center, Japan, November 1-4, 1996, pp. 1–13. World Scientific, Singapore (1996)Google Scholar
  8. 8.
    Buchberger, B.: Theory exploration with theorema. Analele Universitatii Din Timisoara, ser. Matematica-Informatica XXXVIII(2), 9–32 (2000)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Buchberger, B.: Algorithm invention and verification by lazy thinking. In: Petcu, D., Zaharie, D., Negru, V., Jebelean, T. (eds.) Proc. of the 5th Int. Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2003), Timisoara, Romania, October 1-4, 2003, pp. 2–26. Mirton (2003)Google Scholar
  10. 10.
    Buchberger, B., Craciun, A.: Algorithm synthesis by lazy thinking: Examples and implementation in theorema. In: Proc. of the Mathematical Knowledge Management Symposium, Edinburgh, UK, November 25-29, 2003. ENTCS, vol. 93, pp. 24–59. Elsevier Science, Amsterdam (2003)Google Scholar
  11. 11.
    Clarke, E., Kohlhase, M., Ouaknine, J., Sutner, K.: System description: analytica 2. In: Hardin, T., Rioboo, R. (eds.) Proc. of the 11th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2003), Rome, Italy, September 10-12, 2003, pp. 10–12. Aracne Editrice S.R.L (2003)Google Scholar
  12. 12.
    Constable, R.: Implementing Mathematics Using the Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  13. 13.
    de Bruijn, N.G.: The mathematical language automath, its usage, and some of its extensions. In: Laudet, M., Lacombe, D., Nolin, L., Schützenberger, M. (eds.) Proc. of Symposium on Automatic Demonstration, Versailles, France. LN in Mathematics, vol. 125, pp. 29–61. Springer, Berlin (1970)CrossRefGoogle Scholar
  14. 14.
    Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch 10, pp. 611–706. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  15. 15.
    Genesereth, M.R., Petrie, Ch., Hinrichs, T., Hondroulis, A., Kassoff, M., Love, N., Mohsin, W.: Knowledge Interchange Format, draft proposed American National Standard (dpANS), Technical Report NCITS.T2/98-004 (1998),
  16. 16.
    Gentzen, G.: Untersuchungen über das logische schließen. Mathematical Zeitschrift 39, 176–210 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  18. 18.
    Common Logic Working Group, Common logic: Abstract syntax and semantics (2003),
  19. 19.
    Hayes, P., Menzel, C.: Semantics of knowledge interchange format (2001),
  20. 20.
    Konev, B., Jebelean, T.: Using meta-variables for natural deduction in Theorema. In: Kerber, M., Kohlhase, M. (eds.) Proc. of Calculemus 2000 Conference, August 6-7, 2000, St. Andrews, UK (2000)Google Scholar
  21. 21.
    Kutsia, T.: Solving and proving in equational theories with sequence variables and flexible arity symbols, Technical Report 02-31, RISC. Johannes Kepler University, Linz, Austria (2002)Google Scholar
  22. 22.
    Kutsia, T.: Theorem proving with sequence variables and flexible arity symbols. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 278–291. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Kutsia, T.: Solving equations involving sequence variables and sequence functions, Technical Report 04-01, RISC. Johannes Kepler University, Linz, Austria (2004)Google Scholar
  24. 24.
    Kutsia, T., Buchberger, B.: Predicate logic with sequence variables and sequence function symbols, Technical report, SFB, Linz, Austria (2004)Google Scholar
  25. 25.
    Luo, Zh., Pollack, R.: LEGO proof development system: User’s manual, Technical Report ECS-LFCS-92-211. University of Edinburgh (1992)Google Scholar
  26. 26.
    Magnusson, L., Nordström, B.: The ALF proof editor and its proof engine. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 213–237. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  27. 27.
    Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained clauses. J. Symbolic Computation 19, 321–351 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Paulson, L.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic and Computer Science, pp. 361–386. Academic Press, London (1990)Google Scholar
  29. 29.
    Pfenning, F.: ELF: A meta-language for deductive systems. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 811–815. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  30. 30.
    Windsteiger, W.: Exploring an algorithm for polynomial interpolation in the Theorema system. In: Hardin, T., Rioboo, R. (eds.) Proc. of the 11th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2003), Rome, Italy, September 10-12, 2003, pp. 130–136. Aracne Editrice S.R.L (2003)Google Scholar
  31. 31.
    Wolfram, S.: The MATHEMATICA Book, 4th edn. Cambridge University Press and Wolfram Research, Inc. (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Temur Kutsia
    • 1
  • Bruno Buchberger
    • 1
  1. 1.Research Institute for Symbolic ComputationJohannes Kepler University LinzLinzAustria

Personalised recommendations