Skip to main content

Rough Concept Analysis – Theory Development in the Mizar System

  • Conference paper
Mathematical Knowledge Management (MKM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3119))

Included in the following conference series:

Abstract

Theories play an important role in building mathematical knowledge repositories. Organizing knowledge in theories is an obvious approach to cope with the growing number of definitions, theorems, and proofs. However, they are also a matter of subject on their own: developing a new piece of mathematics often relies on extending or combining already developed theories in this way reusing definitions as well as theorems. We believe that this aspect of theory development is crucial for mathematical knowledge management.

In this paper we investigate the facilities of the Mizar system concerning extending and combining theories based on structure and attribute definitions. As an example we consider the formation of rough concept analysis out of formal concept analysis and rough sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bancerek, G.: Development of the theory of continuous lattices in Mizar. In: Kerber, M., Kohlhase, M. (eds.) Proceedings of the Symposium on Calculemus 2000, pp. 65–80 (2001)

    Google Scholar 

  2. Bancerek, G.: On the structure of Mizar types. In: Geuvers, H., Kamareddine, F. (eds.) Proc. of MLC 2003. ENTCS, vol. 85(7) (2003)

    Google Scholar 

  3. Buchberger, B.: Mathematical Knowledge Management in Theorema. In: Buchberger, B., Caprotti, O. (eds.) Proc. of MKM 2001, Linz, Austria (2001)

    Google Scholar 

  4. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen, http://www.cs.kun.nl/~freek/notes/

  5. Farmer, W., Guttman, J., Thayer, F.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)

    Google Scholar 

  6. Farmer, W., Guttman, J., Thayer, F.: IMPS – an Interactive Mathematical Proof System. Journal of Automated Reasoning 11, 213–248 (1993)

    Article  MATH  Google Scholar 

  7. Ganter, B., Wille, R.: Formal concept analysis – mathematical foundations. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  8. Grabowski, A.: Basic properties of rough sets and rough membership function. Formalized Mathematics (to appear, 2004), Available from: [13]

    Google Scholar 

  9. Hurd, J.: Verification of the Miller-Rabin probabilistic primality test. Journal of Logic and Algebraic Programming 56, 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Järvinen, J.: Approximations and rough sets based on tolerances. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Kent, R.E.: Rough Concept Analysis: a synthesis of rough sets and formal concept analysis. Fundamenta Informaticae 27(2–3), 169–181 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Loos, R., Musser, D., Schupp, S., Schwarzweller, C.: The Tecton concept library, Technical Report WSI 99-2, Wilhelm-Schickard-Institute for Computer Science, University of Tübingen (1999)

    Google Scholar 

  13. The Mizar Home Page, http://mizar.org

  14. Musser, D., Shao, Z.: The Tecton concept description language (revised version), Technical Report 02-2, Rensselaer Polytechnic Institute (2002)

    Google Scholar 

  15. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Owre, S., Shankar, N.: Theory interpretations in PVS, Technical Report, NASA/CR-2001-211024 (2001)

    Google Scholar 

  17. Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  18. Raczkowski, K., Sadowski, P.: Equivalence relations and classes of abstraction. Formalized Mathematics 1(3), 441–444 (1990), Available in JFM from: [13]

    Google Scholar 

  19. Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proc. of MKM 2001, Linz, Austria (2001)

    Google Scholar 

  20. Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 162–174. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Saquer, J., Deogun, J.S.: Concept approximations based on rough sets and similarity measures. International Journal on Applications of Mathematics in Computer Science 11(3), 655–674 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Schwarzweller, C.: Introduction to concept lattices. Formalized Mathematics 7(2), 233–242 (1998), Available in JFM from: [13]

    Google Scholar 

  23. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, Reidel. Dordrecht-Boston (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabowski, A., Schwarzweller, C. (2004). Rough Concept Analysis – Theory Development in the Mizar System. In: Asperti, A., Bancerek, G., Trybulec, A. (eds) Mathematical Knowledge Management. MKM 2004. Lecture Notes in Computer Science, vol 3119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27818-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27818-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23029-8

  • Online ISBN: 978-3-540-27818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics