Skip to main content

Assessment of Intrathoracic Airway Trees: Methods and In Vivo Validation

  • Conference paper
Book cover Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis (MMBIA 2004, CVAMIA 2004)

Abstract

A method for quantitative assessment of tree structures is reported allowing evaluation of airway tree morphology and its associated function. Our skeletonization and branch–point identification method provides a basis for tree quantification or tree matching, tree–branch diameter measurement in any orientation, and labeling individual branch segments. All main components of our method were specifically developed to deal with imaging artifacts typically present in volumetric medical image data. The proposed method has been tested in a computer phantom subjected to changes of its orientation as well as in repeatedly CT-scanned rigid and rubber plastic phantoms. In this paper, validation is reported in six in vivo scans of the human chest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986)

    Article  Google Scholar 

  2. Chen, Z., Molloi, S.: Automatic 3D vascular tree construction in CT angiography. Computerized Medical Imaging and Graphics 27, 469–479 (2003)

    Article  Google Scholar 

  3. Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O.: Symbolic descriptions of 3–D structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Barrett, H.H., Gmitro, A.F. (eds.) IPMI 1993. LNCS, vol. 687, pp. 94–111. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Kitaoka, H., Takaki, R., B.: A three-dimensional model of the human airway tree. Journal of Applied Physiology 87, 2207–2217 (1999)

    Google Scholar 

  5. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)

    Article  Google Scholar 

  6. Maddah, M., Afzali–Kusha, A., Soltanian–Zadeh, H.: Efficient center–line extraction for quantification of vessels in confocal microscopy images. Medical Physics 30, 204–211 (2003)

    Article  Google Scholar 

  7. Mori, K., Hasegawa, J., Suenaga, Y., Toriwaki, J.: Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system. IEEE Trans. Medical Imaging 19, 103–114 (2000)

    Article  Google Scholar 

  8. Nyström, I.: Skeletonization applied to magnetic resonance angiography images. In: Proc. Medical Imaging 1998: Image Processing, vol. 3338, pp. 693–701. SPIE, CA (2003)

    Google Scholar 

  9. Palágyi, K., Tschirren, J., Sonka, M.: Quantitative analysis of three-dimensional tubular tree structures. In: Proc. Medical Imaging 2003: Image Processing, vol. 5032, pp. 277–287. SPIE, CA (2003)

    Google Scholar 

  10. Palágyi, K., Tschirren, J., Sonka, M.: Quantitative analysis of intrathoracic airway trees: methods and validation. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 222–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Toriwaki, J., Mori, K.: Distance transformation and skeletonization of 3D pictures and their applications to medical images. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 412–429. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3–D pictures. Computer Graphics and Image Processing 17, 315–331 (1981)

    Article  Google Scholar 

  13. Wan, S.Y., Kiraly, A.P., Ritman, E.L., Higgins, W.E.: Extraction of the hepatic vasculature in rats using 3-D Micro-CT images. IEEE Trans. Medical Imaging 19, 964–971 (2000)

    Article  Google Scholar 

  14. Wood, S., Zerhouni, A., Hoford, J., Hoffman, E.A., Mitzner, W.: Measurement of three-dimensional lung tree structures using computed tomography. Journal of Applied Physiology 79, 1687–1697 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M. (2004). Assessment of Intrathoracic Airway Trees: Methods and In Vivo Validation. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27816-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22675-8

  • Online ISBN: 978-3-540-27816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics