Skip to main content

A Hybrid Logic of Knowledge Supporting Topological Reasoning

  • Conference paper
Algebraic Methodology and Software Technology (AMAST 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3116))

Abstract

We consider a certain, in a way hybrid extension of a system called topologic, which has been designed for reasoning about the spatial content of the idea of knowledge. What we add to the language of topologic are names of both points and neighbourhoods of points. Due to the special semantics of topologic these names do not quite behave like nominals in hybrid logic. Nevertheless, corresponding satisfaction operators can be simulated with the aid of the global modality, which becomes, therefore, another means of expression of our system. In this paper we put forward an axiomatization of the set of formulas valid in all such hybrid scenarios, and we prove the decidability of this logic. Moreover, we argue that the present approach to hybridizing modal concepts for knowledge and topology is not only much more powerful but also much more natural than a previous one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. In: Cambridge Tracts in Theoretical Computer Science, vol. 41, Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) Theoretical Aspects of Reasoning about Knowledge (TARK 1992), pp. 95–105. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  4. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8, 339–365 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. In: Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. Logic Journal of the IGPL 8, 653–679 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heinemann, B.: Knowledge over dense flows of time (from a hybrid point of view). In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 194–205. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Heinemann, B.: Separating sets by modal formulas. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 140–153. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Heinemann, B.: Generalizing the modal and temporal logic of linear time. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 41–56. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Bourbaki, N.: General Topology, Part 1. Hermann, Paris (1966)

    Google Scholar 

  13. Heinemann, B.: Extended canonicity of certain topological properties of set spaces. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 135–149. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Krommes, G.: A new proof of decidability for the modal logic of subset spaces. In: ten Cate, B. (ed.) Proceedings of the Eighth ESSLLI Student Session, Vienna, Austria, pp. 137–147 (2003)

    Google Scholar 

  15. Blackburn, P., Spaan, E.: A modal perspective on the computational complexity of attribute value grammar. Journal of Logic, Language and Information 2, 129–169 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch, M., Polos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159. Springer, Heidelberg (1994)

    Google Scholar 

  17. Georgatos, K.: Knowledge on treelike spaces. Studia Logica 59, 271–301 (1997)

    Google Scholar 

  18. Heinemann, B.: A hybrid treatment of evolutionary sets. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 204–213. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Heinemann, B.: An application of monodic first-order temporal logic to reasoning about knowledge. In: Reynolds, M., Sattar, A. (eds.) Proceedings TIME-ICTL 2003, pp. 10–16. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  20. McKinsey, J.C.C.: A solution to the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic 6, 117–141 (1941)

    Article  MathSciNet  Google Scholar 

  21. Gabelaia, D.: Modal definability in topology. Master’s thesis, ILLC, Universiteit van Amsterdam (2001)

    Google Scholar 

  22. Weiss, M.A., Parikh, R.: Completeness of certain bimodal logics for subset spaces. Studia Logica 71, 1–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinemann, B. (2004). A Hybrid Logic of Knowledge Supporting Topological Reasoning. In: Rattray, C., Maharaj, S., Shankland, C. (eds) Algebraic Methodology and Software Technology. AMAST 2004. Lecture Notes in Computer Science, vol 3116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27815-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27815-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22381-8

  • Online ISBN: 978-3-540-27815-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics