The UCLID Decision Procedure

  • Shuvendu K. Lahiri
  • Sanjit A. Seshia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3114)

Abstract

UCLID is a tool for term-level modeling and verification of infinite-state systems expressible in the logic of counter arithmetic with lambda expressions and uninterpreted functions (CLU). In this paper, we describe a key component of the tool, the decision procedure for CLU. Apart from validity checking, the decision procedure also provides other useful features such as concrete counterexample generation and proof-core generation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Programming Language Design and Implementation (PLDI 2001), pp. 203–213 (2001)Google Scholar
  2. 2.
    Barrett, C., Dill, D., Levitt, J.: Validity checking for combinations of theories with equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 187–201. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bryant, R.E., German, S., Velev, M.N.: Processor verification using efficient reductions of the logic of uninterpreted functions to propositional logic. ACM Transactions on Computational Logic 2(1), 1–41 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonizer and Solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Lahiri, S.K., Bryant, R.E., Goel, A., Talupur, M.: Revisiting positive equality. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Lahiri, S.K., Seshia, S.A., Bryant, R.E.: Modeling and verification of out-oforder microprocessors in UCLID. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 142–159. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Seshia, S.A., Bryant, R.E.: Deciding quantifier-free Presburger formulas using parameterized solution bounds. In: 19th IEEE Symposium on Logic in Computer Science (LICS) (July 2004) (to appear)Google Scholar
  12. 12.
    Seshia, S.A., Lahiri, S.K., Bryant, R.E.: A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In: 40th Design Automation Conference (DAC 2003), June 2003, pp. 425–430 (2003)Google Scholar
  13. 13.
    Strichman, O., Seshia, S.A., Bryant, R.E.: Deciding separation formulas with SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 209–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Stump, A., Barrett, C.W., Dill, D.L.: CVC: A Cooperating Validity Checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    UCLID, Available at http://www.cs.cmu.edu/~uclid

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shuvendu K. Lahiri
    • 1
  • Sanjit A. Seshia
    • 1
  1. 1.Carnegie Mellon UniversityPittsburgh

Personalised recommendations