Zapato: Automatic Theorem Proving for Predicate Abstraction Refinement

  • Thomas Ball
  • Byron Cook
  • Shuvendu K. Lahiri
  • Lintao Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3114)

Abstract

Counterexample-driven abstraction refinement is an automatic process that produces abstract models of finite and infinite-state systems. When this process is applied to software, an automatic theorem prover for quantifier-free first-order logic helps to determine the feasibility of program paths and to refine the abstraction. In this paper we report on a fast, lightweight, and automatic theorem prover called Zapato which we have built specifically to solve the queries produced during the abstraction refinement process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, T., Rajamani, S.K.: Generating abstract explanations of spurious counterexamples in C programs. Technical Report MSR-TR-2002-09, Microsoft Research (2002) Google Scholar
  2. 2.
    Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predicate abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 388–403. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: PLDI 01: Programming Language Design and Implementation, pp. 203–213. ACM, New York (2001)CrossRefGoogle Scholar
  4. 4.
    Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver for constraint logic programming. In: Australian Computer Science Conference (Australian Computer Science Communications), pp. 102–111 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Ball
    • 1
  • Byron Cook
    • 1
  • Shuvendu K. Lahiri
    • 2
  • Lintao Zhang
    • 1
  1. 1.Microsoft Corporation 
  2. 2.Carnegie-Mellon University 

Personalised recommendations