Skip to main content

Independent Set of Intersection Graphs of Convex Objects in 2D

  • Conference paper
Algorithm Theory - SWAT 2004 (SWAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3111))

Included in the following conference series:

Abstract

The intersection graph of a set of geometric objects is defined as a graph G = (S,E) in which there is an edge between two nodes s i , s j S if s i s j ≠ ∅. The problem of computing a maximum independent set in the intersection graph of a set of objects is known to be NP-complete for most cases in two and higher dimensions. We present approximation algorithms for computing a maximum independent set of intersection graphs of convex objects in ℝ2. Specifically, given a set of n line segments in the plane with maximum independent set of size κ, we present algorithms that find an independent set of size at least (i) (κ/2log (2n/κ))1/2 in time O(n 3) and (ii) (κ/2log (2n/κ))1/4 in time O(n 4/3 logc n). For a set of n convex objects with maximum independent set of size κ, we present an algorithm that finds an independent set of size at least (κ/2log (2n/κ) )1/3 in time O(n 3 + τ(S)), assuming that S can be preprocessed in time τ(S) to answer certain primitive operations on these convex sets.

Work has been supported by NSF under grants CCR-00-86013 EIA-98-70724, EIA-99-72879, EIA-01-31905, and CCR-02-04118 and by a grant from the U.S.-Israeli Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, vol. 223, pp. 1–56 (1999)

    Google Scholar 

  2. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Computational Geometry: Theory and Applications 11, 209–218 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  4. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: Static-to-dynamic transformation. J. Algorithms 1, 301–358 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berman, P., Fujito, T.: Approximating independent sets in degree 3 graphs. In: Proc. 4th Workshop on Algorithms and Data Structures, pp. 449–460 (1995)

    Google Scholar 

  6. Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets by excluding subgraphs . In: Gilbert, J.R., Karlsson, R. (eds.) Proc. 2nd Scandinavian Workshop on Algorithm Theory, vol. 447, pp. 13–25 (1990)

    Google Scholar 

  7. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. Journal of Algorithms 46, 178–189 (2003)

    Article  MATH  Google Scholar 

  8. Chan, T.M.: Anote onmaximumindependent sets in rectangle intersection graphs, Information. Information Processing Letters 89, 19–23 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dilworth, P.: A decomposition thorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)

    Article  MathSciNet  Google Scholar 

  10. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric graphs. In: Proceedings of the Twelth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 671–679 (2001)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Hastad, J.: Clique is hard to approximate within n1−_, Acta Math., vol. 182, pp. 105–142 (1999)

    Google Scholar 

  13. Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms 26, 238–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4, 310–323 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Kratochvil and J. Matousek, Intersection graphs of segments, Journal of Combinatorial Theory, Series B, 62 (1994), 289–315.

    Google Scholar 

  16. E. Malesinska, Graph-theoretical models for frequency assignment problems, Ph.D. Thesis, Technische Universitit Berlin, 1997.

    Google Scholar 

  17. J. Pach and P. K. Agarwal, Combinatorial Geometry, John Wiley & Sons, New York, NY, 1995.

    Google Scholar 

  18. J. Pach and G. Tardos, Cutting glass, Proc. 16th Annual Symposium on Computational Geometry, 2000, pp. 360–369.

    Google Scholar 

  19. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci., 43 (1991), 425–440.

    Google Scholar 

  20. C. S. Rim and K. Nakajima, On rectangle intersection and overlap graphs, IEEE Transactions on Circuits and Systems, 42 (1995), 549–553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Mustafa, N.H. (2004). Independent Set of Intersection Graphs of Convex Objects in 2D. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27810-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22339-9

  • Online ISBN: 978-3-540-27810-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics