Skip to main content

Small Phylogeny Problem: Character Evolution Trees

  • Conference paper
Book cover Combinatorial Pattern Matching (CPM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3109))

Included in the following conference series:

Abstract

Phylogenetics is a science of determining connections between groups of organisms in terms of ancestor/descendent relationships, usually expressed by phylogenetic trees, also called “trees of life”, cladograms, or dendograms. In parsimony approach to reconstruct the phylogenetic trees, the goal is to find the most parsimonious tree, i.e., the tree requiring the smallest number/score of evolutionary steps. For all reasonable measures this problem is NP-hard. Assuming the structure of the tree is given, we are left with, in some cases tractable, problem of “small phylogeny”: how to assign characters to the internal nodes representing extinct species. We propose a new approach together with the corresponding parsimony criteria for working with nonlinear transformation series of states of a character: a character evolution trees. We use tools of structural graph theory to reconcile a character tree with a phylogenetic tree. For this purpose, we introduce two new scoring metrics: the bag cost, analogous to unweighted parsimony, and the arc cost, analogous to weighted parsimony. We will provide several linear time algorithms solving small phylogeny problem while minimizing the above scoring functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camin, J.H., Sokal, R.R.: A method for deducing branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  2. Doyle, J.J.: Gene trees and species trees: Molecular systematics as onecharacter taxonomy. Systematic Botany 17, 144–163 (1992)

    Article  Google Scholar 

  3. Day, W.I.E., Sankoff, D.: Computational complexity of inferring phylogenies by compatibility. Systematic Zoology 35, 224–229 (1986)

    Article  Google Scholar 

  4. Farris, J.S.: Methods for computing Wagner trees. Systematic Zoology 19, 83–92 (1970)

    Article  Google Scholar 

  5. Farris, J.S.: Outgroups and parsimony. Zoology 31, 314–320 (1982)

    Google Scholar 

  6. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  7. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NPcomplete. Advances In Applied mathematics 3, 43–49 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fitch, W.M.: Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology 20, 406–416 (1971)

    Article  Google Scholar 

  9. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155, 279–284 (1967)

    Article  Google Scholar 

  10. Hennig, W.: Phylogenetic Systematics. University of Illinois Press (1966)

    Google Scholar 

  11. Hawkins, J.A., Hughes, C.E., Scotland, R.W.: Primary homology assessment, characters and character states. Cladistics 13, 275–283 (1997)

    Article  Google Scholar 

  12. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13, 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lipscomb, D.L.: Parsimony, homology and the analysis of multistate characters. Cladistics 8, 45–65 (1992)

    Article  Google Scholar 

  14. Mickevich, M.F.: Transformation series analysis. Systematic Zoology 31, 461–478 (1982)

    Article  Google Scholar 

  15. Mickevich, M.F., Lipscomb, D.L.: Parsimony and the choice between different transformations for the same character set. Cladistics 7, 111–139 (1991)

    Article  Google Scholar 

  16. Matousek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial k-trees. Journal of Algorithms 108, 343–364 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Mickevich, M.F., Weller, S.: Evolutionary character analysis: Tracing character change on a cladogram. Cladistics 6, 137–170 (1990)

    Article  Google Scholar 

  18. O’Grady, R.T., Deets, G.B.: Coding mulitistate characters, with special reference to the use of parasites as characters of their hosts. Systematic Zoology 36, 268–279 (1987)

    Article  Google Scholar 

  19. Pogue, M., Michevich, M.F.: Character definitons and character state delineations: the bete noire of phylogenetics. Cladistics 6, 365–369 (1990)

    Article  Google Scholar 

  20. Pamilo, P., Nei, M.: Relationships between gene trees and species trees. Mo. Biol. Evol. 5, 568–583 (1988)

    Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sankoff, D.D.: Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics 28, 35–42 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sankoff, D., Cedergren, R.: Simultaneous comparisons of three or more sequences related by a tree. In: Sankoff, D., Kruskal, J. (eds.) Time Warp, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparison, pp. 253–264. Addison Wesley, Reading (1983)

    Google Scholar 

  24. Saitou, N., Imanishi, T.: Relative efficiencies of the Fitch-Margoliash, maximum parsimony, maximum likelihood, minimum-evolution, and neighborjoining methods of phylogenetic tree construction in obtaining the correct tree. Journal of Molecular Evolution 6, 514–525 (1989)

    Google Scholar 

  25. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)

    Google Scholar 

  26. Tateno, Y., Takezaki, N., Nei, M.: Relative efficiencies of the maximumlikelihood, neighbor-joining and maximum-parsimony methods when substitution rate varies with site. Journal of Molecular Evolution 11, 261–277 (1994)

    Google Scholar 

  27. Wu, C.-I.: Inferences of species phylogeny in relation to segregation of acient polymorphisms. Genetics 127, 429–435 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Maňuch, J., Stacho, L., Zhu, C. (2004). Small Phylogeny Problem: Character Evolution Trees. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds) Combinatorial Pattern Matching. CPM 2004. Lecture Notes in Computer Science, vol 3109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27801-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27801-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22341-2

  • Online ISBN: 978-3-540-27801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics