Skip to main content

On the Expected Time for Herman’s Probabilistic Self-stabilizing Algorithm

  • Conference paper
  • 549 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Abstract

In this article we investigate the expected time for Herman’s probabilistic self-stabilizing algorithm in distributed systems: Suppose that the number of identical processes in a ring, say n, is odd and n≥ 3. If the initial configuration of the ring is not “legitimate”, that is, the number of tokens differs from one, then execution of the algorithm made up of synchronous probabilistic procedures with a parameter 0<r<1 results in convergence to a legitimate configuration with a unique token (Herman’s algorithm). We then show that the expected time of the convergence is less than \(\frac{\pi^2-8}{8r(1-r)}n^2\). Moreover there exists a configuration whose expected time is Θ(n 2). The method of the proof is based on the analysis of coalescing random walks.

This work was supported by Grant-in-Aid for Young Scientists (B) No. 14740077 from MEXT Japan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, Ahn, Karp, Ross: Coalescing Times for IID Random Variables with Applications to Population Biology. Random Struct. Alg. 23(2), 155–166 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldous, Fill: Reversible Markov Chains and Random Walk on Graphs, monograph in preparation, http://www.stat.berkeley.edu/~aldous/book.html

  3. Brightwell, Winkler: Maximal hitting time for random walks on graphs. Random Struct. Alg. 1, 263–275 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. Disc. Math. 6(3), 363–374 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dijkstra, E.: Self-stabilizing system in spite of distributed control. Comm. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  6. Dolev: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Fribourg, L., Messika, S., Pecaronny, C.: Trace of Randomized distributed algorithms as Gibbs fields, Research Report LSV-02-12, Lab. Spéc. et. Vér, CNRS & ENS de Cachan, France (September 2002)

    Google Scholar 

  8. Herman: Probabilistic self-stabilization. Info. Proc. Lett. 35, 63–67 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hassin, Y., Peleg, D.: Distributed Probabilistic Polling and Applications to Proportionate Agreement. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 402–411. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Hofbauser: A simple proof of 1+ \(\frac{1}{2^{2}}\) + \(\frac{1}{3^{2}}\)+..=\(\frac{{\pi}^{2}}{6}\) and related identities. American Mathematical Monthly 109, 196–200 (2002)

    Article  MathSciNet  Google Scholar 

  11. Lamport: Solved problems, unsolved problems and non-problems in concurrency. In: Proc. of PDOC, pp. 1–11 (1984)

    Google Scholar 

  12. Lindvall: Lectures on the coupling method. Wiley, Chichester (1992)

    MATH  Google Scholar 

  13. Tetali, Winkler: Simultaneous reversible Markov chains. In: Combinatorics: Paul Erdös is Eighty, pp. 433–451. Bolai Soc. Math. Stud (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakata, T. (2004). On the Expected Time for Herman’s Probabilistic Self-stabilizing Algorithm. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics