This paper presents the VIBES (Virtual Behaviors) framework used to simulate a ”virtual brain” capable of generating, in real time, behaviors for virtual characters. The main originality of VIBES is to combine usual behavioral animation techniques with a learning engine based on Learning Classifiers Systems in order to obtain actors that can learn how to adapt to their dynamic environment and how to efficiently combine known tasks in order to perform the user’s tasks. VIBES is a module of the V-Man [1] character animation system developed in the frame of the V-Man project supported by the European Commission in the frame of the 5th framework program.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menou, E., Philippon, L., Sanchez, S., Duchon, J., Balet, O.: The V-Man Project: towards autonomous virtual characters. In: Balet, O., Subsol, G., Torguet, P. (eds.) ICVS 2003. LNCS, vol. 2897, pp. 135–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Brooks, R.: Intelligence Without Reason. In: Computers and Thought IJCAI (1991)Google Scholar
  3. 3.
    Donikian S.: « HPTS: a Behaviour Modelling Language for Autonomous Agents ». In: Fifth International Conference on Autonomous Agents, Montreal, Canada (May 2001) Google Scholar
  4. 4.
    Funge, J., Tu, X., Terzopoulos, D.: Cognitive Modelling: Knowledge, Reasoning and Planning for Intelligent Characters. In: SIGGRAPH 1999, Los Angeles, CA, August 11-13 (1999)Google Scholar
  5. 5.
    Heguy, O., Sanza, C., Berro, A., Duthen, Y.: GXCS: A Generic Classifier System and its application in a Real Time Cooperative Behavior Simulations. In: International Symposium and School on Advanced Distributed System (ISSADS 2002), November 11-15 (2002)Google Scholar
  6. 6.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975) (republished by the MIT Press) (1992)Google Scholar
  7. 7.
    Holland, J.H.: Adaptive Algorithms for Discovering and Using General Patterns in Growing Knowledge Bases. International Journal for Policy Analysis and Informations Systems 4(3), 245–268 (1980)Google Scholar
  8. 8.
    Iglesias, A., Luengo, F.: Behavioral Animation of Virtual Agents. In: 3IA’2003 The 6th International Conference on Computer Graphics and Artificial Intelligence, Limoges, France (May 2003)Google Scholar
  9. 9.
    Perlin, K., Goldberg, A.: Improv: a system for scripting interactive actors in virtual worlds. In: Proceedings of SIGGRAPH 1996, New Orleans, pp. 205–216 (1996)Google Scholar
  10. 10.
    Reynolds, C.W.: Steering Behaviors for autonomous Characters. In: Game Developper Conference, San José, USA (1999)Google Scholar
  11. 11.
    Sanza, C.: Evolution d’entités virtuelles coopératives par systèmes de classifieurs’, Thèse de Doctorat, Université Paul Sabatier, Toulouse (June 2001)Google Scholar
  12. 12.
    Thalmann, D., Musse, S.R., Kallmann, M.: Virtual Humans Behavior: Individuals, Group and Crowds. In: Proceedings of Digital Media Futures International Conference. Bradford, United Kingdom (1999)Google Scholar
  13. 13.
    Tu, X., Terzopoulos, D.: Artificial Fishes: Physics, Locomotion, Perception, Behavior. In: SIGGRAPH (1993)Google Scholar
  14. 14.
    Watkins, C., Dayan, P.: Technical Note: Q-Learning. Machine Learning 8, 279–292 (1992)MATHGoogle Scholar
  15. 15.
    Wilson, S.W.: ZCS: A Zeroth level Classifier System. Evolutionary computation 2(1), 1–18 (1994)CrossRefGoogle Scholar
  16. 16.
    Wiener, N.: Cybernetics; or, control and communication in the animal and the machine. Wiley, Chichester (1948)Google Scholar
  17. 17.
    Mc Culloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rosenblatt, F.: The Perceptron: probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Hebb, D.O.: The organisation of behavior. Wiley, Chichester (1949)Google Scholar
  20. 20.
    Minsky, M.: A Framework for Representing Knowledge. In: Winston, P. (ed.) The Psychology of Computer, Vision, pp. 211–277. McGraw-Hill, NY (1975)Google Scholar
  21. 21.
    Luga, H., Panatier, C., Balet, O., Torguet, P., Duthen, Y.: Collective Behaviour and Adaptive Interaction in a Distributed Virtual Reality System. In: Proceedings of ROMAN 1998, IEEE International Workshop on Robot and Human Communication (1998)Google Scholar
  22. 22.
    Sims, K.: Evolving virtual creatures. In: Proceedings of SIGGRAPH 1994, Orlando, Fla, July 24–29, pp. 15–22. ACM Press, New York (1994)CrossRefGoogle Scholar
  23. 23.
    Charles, F., Cavazza, M., Mead, S.J.: Generating Dynamic Storylines Through Characters’ Interactions. International Journal on Intelligent Games and Simulation 1(1), 5–11 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stéphane Sanchez
    • 1
    • 2
  • Olivier Balet
    • 2
  • Hervé Luga
    • 1
  • Yves Duthen
    • 1
  1. 1.Université Toulouse 1/IRITToulouse cedexFrance
  2. 2.Virtual Reality Department, C-SToulouseFrance

Personalised recommendations