Skip to main content

Properties of Object Petri Nets

  • Conference paper
Applications and Theory of Petri Nets 2004 (ICATPN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3099))

Included in the following conference series:

Abstract

In this presentation the structure of formalisms are studied that allow Petri nets as tokens. The relationship towards common Petri net models and decidability issues are studied. Especially for ”elementary object-net systems” defined by Valk [x] the decidability of the reachability and the boundedness problem is considered. It is shown that reachability becomes undecidable while boundedness remains decidable for elementary object-net systems. Furthermore it is shown that even for minimal extensions the formalism obtains the power of Turing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in membership equational logic. Theoretical Computer Science 236, 35–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cardelli, L., Gordon, A.D., Ghelli, G.: Mobility types for mobile ambients. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 230–239. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Ciardo, G.: Petri nets with marking-dependent arc cardinality: properties and analysis. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 179–199. Springer, Heidelberg (1994)

    Google Scholar 

  4. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Farwer, B.: A linear logic view of object Petri nets. Fundamenta Informaticae 37(3), 225–246 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Köhler, M., Farwer, B.: Mobile object-net systems and their processes. Fundamenta Informaticae 59, 1–17 (2004)

    MathSciNet  Google Scholar 

  9. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets within nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 121–140. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Köhler, M., Rölke, H.: Concurrency for mobile object-net systems. Fundamenta Informaticae 54(2-3) (2003)

    Google Scholar 

  11. Kummer, O.: Undecidability in object-oriented Petri nets. Petri Net Newsletter 59, 18–23 (2000)

    Google Scholar 

  12. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)

    Google Scholar 

  13. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested Petri nets. In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp. 208–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: 13th Annual ACM Symposium on Theory of Computing, pp. 238–246 (1981)

    Google Scholar 

  15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96, 73–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation 88(2), 105–155 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science 80, 1–34 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework for Petri nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, p. 250. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 464–476. Springer, Heidelberg (1978)

    Google Scholar 

  20. Valk, R.: Petri nets as token objects: An introduction to elementary object nets. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köhler, M., Rölke, H. (2004). Properties of Object Petri Nets. In: Cortadella, J., Reisig, W. (eds) Applications and Theory of Petri Nets 2004. ICATPN 2004. Lecture Notes in Computer Science, vol 3099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27793-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27793-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22236-1

  • Online ISBN: 978-3-540-27793-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics