Skip to main content

Semantic Enrichment for Ontology Mapping

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 3136)

Abstract

In this paper, we present a heuristic mapping method and a prototype mapping system that support the process of semi-automatic ontology mapping for the purpose of improving semantic interoperability in heterogeneous systems. The approach is based on the idea of semantic enrichment, i.e. using instance information of the ontology to enrich the original ontology and calculate similarities between concepts in two ontologies. The functional settings for the mapping system are discussed and the evaluation of the prototype implementation of the approach is reported.

Keywords

  • Feature Vector
  • Resource Description Framework
  • Mapping Task
  • Vector Space Model
  • Ontology Mapping

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-27779-8_19
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-27779-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceeding of the WWW-11, Hong Kong (2001)

    Google Scholar 

  2. Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and structured data sources. SIGMOD Record 28(1), 54–59 (1999)

    CrossRef  Google Scholar 

  3. Berners-Lee, T.: The semantic web. Scientific american 284(5), 35–43 (2001)

    CrossRef  Google Scholar 

  4. Brasethvik, T., Gulla, J.A.: Natural language analysis for semantic document modeling. Data & knowledge Engineering 38(1), 45–62 (2001)

    MATH  CrossRef  Google Scholar 

  5. Didion, J.: Jwnl (java wordnet library) (2004), http://sourceforge.net/projects/jwordnet/

  6. DublinCore, http://www.dublincore.org

  7. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G., Brown, M., Flett, A.: Product data integration in b2b e-commerce. IEEE Intelligent Systems (Special Issue on Intelligent E-Business) 16(4), 54–59 (2001)

    Google Scholar 

  9. Google (2004)

    Google Scholar 

  10. Sari Hakkarainen. Dynamic aspect and semantic enrichment in schema comparison. PhD thesis, Stockholm University (1999)

    Google Scholar 

  11. Kaada, H.: Linguistic workbench for document analysis and text data mining. Master’s thesis, Norwegian University of Science and Technology (2002)

    Google Scholar 

  12. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching using cupid. In: Proceeding of Very Large Database Conference (VLDB) 2001 (2001)

    Google Scholar 

  13. Malone, T.W., Crowston, K., Lee, J., Pentland, B.: Tools for inventing organizations: Toward a handbook of organizational processes. Technical Report 141, MIT (1993)

    Google Scholar 

  14. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning, Colorado, USA (2000)

    Google Scholar 

  15. Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.P.: Observer: an approach for query processing in global infomation systems based on interoperation across pre-exist ontologies. International journal on distributed and parallel databases 8(2), 223–271 (2000)

    CrossRef  Google Scholar 

  16. Fridman Noy, N., Musen, M.A.: Prompt: algorithm and tool for automated ontology merging and alignment. In: Proceeding of American Association for Artificial Intelligence (AAAI) (2000)

    Google Scholar 

  17. Palopoli, L., Terracina, G., Ursino, D.: The system dike: Towards the semi-automatic synthesis of cooperative information systems and data warehouses. In: ADBIS-DASFAA Symposium 2000, pp. 108–117. Matfyz Press (2000)

    Google Scholar 

  18. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)

    MATH  CrossRef  Google Scholar 

  19. Salton, G., McGill, M.J.: An Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    Google Scholar 

  20. Solvberg, A.: Data and what they refer to. In: Chen, P.P. (ed.) Concept Modeling: Historical Perspectives and Future Trends, Springer, Heidelberg (1998)

    Google Scholar 

  21. Stumme, G., Maedche, A.: Fca-merge: Bottom-up merging of ontologies. In: Proceedings of the International Joint Conference on Artificial Intelligence IJCAI 2001, Seattle, USA (2001)

    Google Scholar 

  22. Su, X., Hakkarainen, S., Brasethvik, T.: Semantic enrichment for improving systems interoperability. In: Proceeding of the 2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, pp. 1634–1641. ACM Press, New York (2004)

    CrossRef  Google Scholar 

  23. Valente, A., Russ, T., MacGrecor, R., Swartout, W.: Building and (re)using an ontology for air campaign planning. IEEE Intelligent Systems 14(1), 27–36 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, X., Gulla, J.A. (2004). Semantic Enrichment for Ontology Mapping. In: Meziane, F., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2004. Lecture Notes in Computer Science, vol 3136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27779-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27779-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22564-5

  • Online ISBN: 978-3-540-27779-8

  • eBook Packages: Springer Book Archive